
PrivateEye: Scalable and Privacy-Preserving Compromise Detection in the Cloud
Behnaz Arzani1, Selim Ciraci2, Stefan Saroiu1, Alec Wolman1, Jack W. Stokes1, Geoff Outhred2, Lechao Diwu2

1Microsoft Research,2Microsoft

Abstract – Today, it is difficult for operators to detect com-
promised VMs in their data centers (DCs). Despite their
benefits, the compromise detection systems operators offer
are mostly unused. Operators are faced with a dilemma: allow
VMs to remain unprotected, or mandate all customers use
the compromise detection systems they provide. Neither is
appealing: unprotected VMs can be used to attack other VMs.
Many customers would view a mandate to use these detection
systems as unacceptable due to privacy and performance con-
cerns. Data from a production cloud show their compromise
detection systems protect less than 5% of VMs.

PrivateEye is a scalable and privacy-preserving solution.
It uses summaries of network traffic patterns obtained from
the vSwitch, rather than installing binaries in customer VMs,
introspection at the hypervisor, or packet captures. It ad-
dresses the challenge of protecting all VMs at DC-scale while
preserving customer privacy and using low-signal data. We
developed PrivateEye to meet the needs of production DCs.
Evaluation on VMs of both internal and customer VM’s shows
it has an area under the ROC curve – the graph showing the
model’s true positive rate vs its false positive rate – of 0.96.

1 Introduction
Data center (DC) VMs today are largely unprotected – cus-
tomers often don’t use the compromise detection systems
operators offer [1–3]. These systems monitor processes, net-
work traffic, and CPU and disk usage from inside the VM or
through introspection at the hypervisor to detect if the VM is
compromised. We refer to them as OBDs (operator-provided
and introspection-based detectors). Customers are reluctant
to use OBDs due to privacy and performance concerns. Op-
erators can mandate all 1st-party VMs (those running the
provider’s workloads) use OBDs but can’t require the same of
their customers: our measurements of Azure reveal over 95%
of VMs don’t use OBDs! Operators are thus limited to using
non-intrusive methods that prevent VMs from being compro-
mised (e.g., firewalls, ACLs, [4, 5]). But these techniques do
not always detect attacks before they succeed (see §2) and
without additional protections, VMs in the DC can become
and remain compromised for a long time.

It is important to close this gap and protect all VMs. Com-
promised VMs can be used to attack the DC infrastructure, or
another customer’s co-located VMs [6]. Operators need to be
able to detect compromised VMs and protect all customers
without needing their explicit permission or cooperation to
do so. Our goal is to provide protection at DC scale while
preserving customer privacy, without visibility into customer
VMs and without extensive and expensive monitoring.

4
4

3

4
4

3

2258 7003

8
0

2
4

8
0

2
4

3
8

0
0

0

Before Compromise After Compromise

Legitimate

Malicious

Figure 1: A VM’s flows before and after compromise. The
numbers on the edges are port numbers.

Here lies an interesting challenge: OBDs monitor process
execution, check binaries and VM logins [1–3, 7–12], but
without such detailed information, what hope do we have?
Two observations help tackle this problem. First, we can
learn the behavior of common attackers using information
collected from VMs where OBDs are deployed. Second, a
VM’s flow patterns often change once it is compromised [13]
e.g., the VM starts communicating with a command and
control server (C&C), attempts to find and compromise other
vulnerable VMs, or tries to attack the DC infrastructure. For
example, Figure 1 shows a compromised VM discovered in
Azure and its flow pattern before and after compromise. Our
analysis of compromised VMs in Azure shows it is common
to observe changes in network flow patterns when VMs are
compromised. We expect our observations to be applicable
to other providers’ DCs as well.

Others have tried using network data to detect compro-
mised machines but their work doesn’t satisfy our scalabil-
ity and privacy needs. Many studies [14–23] route traffic
through middleboxes, rely on packet captures, or deep packet
inspection (DPI) to extract features which are difficult, if
not impossible, to gather through other means (e.g., packet
payload). Continuous packet captures at scale come with
prohibitive performance overheads and violate privacy by
capturing application payloads. Packet captures contain per-
sonally identifiable information (PII), e.g. users’ IP addresses,
with stringent usage requirements [24]. Routing through mid-
dleboxes limits scalability, results in single points of failure,
adds latency, and reduces throughput [25].

We present PrivateEye, a compromise detection system that
runs at DC scale. PrivateEye is tailored to detect common
attackers targeting the cloud, runs continuously, and complies
with GDPR mandates [24]. It avoids expensive data collec-
tion by using flow pattern summaries to detect compromised
VMs. It uses OBDs’ detections on the VMs the operator
can protect to learn the change in flow patterns of compro-
mised VMs. Most OBD detections, which we use to train the
model, are customer VMs (see §9), and so the learned model
is expected to generalize to non-1st-party VMs: PrivateEye
applies this model to all VMs in the DC. PrivateEye uses
random forests (RFs), an interpretable, supervised, machine

learning (ML) model. These models generalize well and can
infer, potentially complex, relationships in the input and are
interpretable [26]. They often have higher accuracy compared
to deployed heuristics (§4) while having similar performance
overhead. PrivateEye leverages these properties to offer a
practical solution for compromise detection at scale.

PrivateEye’s role is to monitor all VMs in the DC and nar-
row the search space of VMs that need to be investigated. It
is designed to have accuracy comparable to OBDs. Once Pri-
vateEye identifies a suspicious VM, operators can use other,
more invasive, methods which require customer permission
to confirm its detections before shutting down the VM or
moving them into a sandbox (see §5).

PrivateEye uses detections from OBDs inside VMs running
real workloads to learn the change in the network behavior
of compromised VMs. Deployed OBDs (only 5% of VMs)
provide PrivateEye with a continuous feed of detections: Pri-
vateEye can identify changes in the attacker’s behavior as
well as new attacks as it can be continuously retrained in the
background. PrivateEye is one of the few systems that can
leverage a continuous stream of detections. Attackers may
attempt to avoid detection. Retraining may not be sufficient
to detect all such attempts, but PrivateEye is still beneficial
as it makes it harder for attackers to damage other VMs and
the DC infrastructure: they would need to constantly modify
their malware to avoid detection. Our contributions are:
1) Creating a scalable, privacy-preserving, compromise detec-
tion system that runs without needing customer permission.
It operates without packet captures, without DPI, without
fine-grained per-packet data, without using IP addresses, and
without visibility into the VM.
2) Reporting on a deployment of PrivateEye’s collection agent
(CA) that has been running on every host across all DCs of
our cloud for two years. It collects network-level data by
querying the vSwitch [27] co-located on the same host.
3) Addressing the practical challenges of extracting features
from coarse-grained flow summaries [28]. We use a novel
feature construction approach that allows the ML model to
detect changes in a VM’s flow pattern while protecting cus-
tomer privacy and keeping the feature vector small.
4) Evaluating PrivateEye using data from our public cloud as
well as analyzing the model’s false and true positives, feature
importance, and design tradeoffs using the same dataset.

Our evaluations on a mix of both our internal and customer
VMs, running real workloads, and set aside for testing, shows
PrivateEye detects ∼ 96% of the compromised VMs detected
by OBDs with only a modest 1% false positive rate. This
true/false positive rate is acceptable for our needs.
2 We need DC-scale compromise detection
We first show the need for DC-scale compromise detection:
Cloud VMs are constantly under attack. Brute-force at-
tacks continue to pose a threat to DCs. We show the distribu-
tion of the arrival rate of SSH login attempts by unauthorized
users to VMs located in 3 major cloud providers and 4 dif-

0

20

40

60

80

100

1 10 100 1,000 10,000

C
D

F
 (

p
er

ce
n

ta
g

e)

Rate of SSH Login Attempts (per min.)

Cloud 1

Cloud 2

Cloud 3

0

20

40

60

80

100

1 10 100 1,000 10,000

C
D

F
 (

p
er

ce
n

ta
g

e)

Rate of SSH Login Attempts (per min.)

Region 1

Region 2

Region 3

Region 4

Figure 2: CDF of Rate of SSH login attempts for each
provider (left) and for each region (right).

ferent regions across the globe (Figure 2). We deployed 120
VMs in each provider’s DCs. We see VMs are subject to
repeated login attempts and at least 3 VMs in each region
experience at least one SSH login attempt per second (VMs
in these experiments were monitored to ensure none of them
are compromised). The time to discovery of a VM – the time
from when it is deployed to the first SSH login attempt – is
also short: many VMs are discovered in less than 15 minutes
(Figure 3). VMs are under constant threat. This is not sur-
prising but it serves to show we need constant monitoring of
VMs in case any of these attempts succeed.
VMs do get compromised when customers are careless.
Customers may fail to use strong passwords – providers en-
force them, but many users change these passwords after-
wards. Such VMs are susceptible to brute-forcers. We created
100 of them in our DCs – we ensured they were not co-located
with other VMs and monitored them to ensure they did not
harm other VMs. We chose passwords from the top 30 of
the 1000 most used passwords [29]. The minimum time to
compromise – the time from when it was instantiated to when
the first successful login occurred – was 5 minutes (password
12345678) with a maximum of 47 hours (password: base-
ball). These VMs did not have OBDs, and none of them were
flagged by any other intrusion detection service.
Compromised VMs are used to attack other VMs. Many
exploits require code to be co-located with the victim. Ac-
cess to a VM in the cloud allows attackers to bypass ACLs
and firewalls that only protect VMs from external attackers.
Compromised VMs may attempt to compromise other VMs:
in one day, our OBDs found 1637 VMs attempting SQL-
injection attacks and 74 attempting brute-force login. While
small compared to the massive scale of the DC, these numbers
only describe those VMs with OBDs. The magnitude of the
problem is much greater when scaled up to all VMs.

OBDs (during Jan-June 2018) showed 14% of alerts were
VMs brute-forcing other VMs and 13.87% were VMs scan-

0

20

40

60

80

100

1 10 100 1,000

C
D

F
 (

p
er

ce
n

ta
g

e)

Time to 1st Bruteforce Attempt (mins)

Cloud 1
Cloud 2
Cloud 3

0

20

40

60

80

100

1 10 100 1,000

C
D

F
 (

p
er

ce
n

ta
g

e)

Time to 1st Bruteforce Attempt (mins)

Region 1

Region 2

Region 3

Region 4

Figure 3: CDF of time between VM deployment and the 1st
login attempt per provider (left) and region (right).

PrivateEye Heuristic
AUC 0.96 0.5

Table 1: Comparison of PrivateEye to deployed heuristic.
ning for vulnerable ports. Furthermore, 7.7% of compromised
VMs were compromised through brute-force attacks.

3 PrivateEye’s threat model
Our threat model is similar to other infrastructure services.
We do not trust any VM (they can run arbitrary code). We
assume we can trust the hypervisors, network, and hardware.

PrivateEye relies on detections from OBDs deployed on
a subset of VMs. We use this data as labels during training
for the ML model. We assume this data cannot be faked,
manipulated, or altered. We also assume OBDs can accurately
detect when a VM is compromised. Specifically, we assume
false positive/negatives rate of OBDs is sufficiently small –
after all, they are accurate enough to be used to protect the
provider’s 1st-party VMs which are critical to its business.

Malware can adapt its behavior in order to conceal ma-
licious behavior. We assume OBDs adapt to such changes
and re-training PrivateEye with their more recent detections
can help it adapt to them as well (see §9). We assume many
attackers do not discriminate between VMs that are protected
by OBDs and those that are not: the same attackers that suc-
cessfully compromise protected VMs can also (one can argue
more easily) compromise others and by learning their behav-
ior, through OBD detections, PrivateEye can protect other
(unprotected) VMs in the DC from these attackers.

4 Simple heuristics are ineffective
Our operators have used insights from past OBD detections to
build a rule-based solution. To motivate using ML, we com-
pare PrivateEye to this strawman which was used to protect
VMs without OBDs in our DCs. It encodes learnings from
honeypots and past OBD detections to a per-VM score which
measures the similarity of a VM’s flows to those attacking
honeypots or past OBD detections. Metrics such as having
more than 500 flows/sec to a port/IP, changing DNS servers,
or too many DNS flows increase the score. The increase is
weighted by the operators’ confidence in the signature.

This (strawman) heuristic identifies VMs engaged in brute-
force or port-sweeping attacks accurately but rarely detects
other compromises. We use the area under the receiver op-
erating characteristic curve (ROC) – the graph that plots the
true positive rate vs false positive rate of an algorithm – or
AUC to measure accuracy. Higher AUCs indicate better accu-
racy. The heuristic has an AUC of 0.5 (PrivateEye’s is 0.96).
Indeed, by only testing on port-sweeping VMs, the heuris-
tic’s AUC increases to 0.69. Looking at its false positives,
10 legitimate VMs, spanning 3 Virtual Networks (VNets),
had scores above 10 (A VNet is a virtual network set up by
a user to connect its VMs). Three of the VMs were in our
canary VNet. Canaries continuously ping on port 10000 to
check network connectivity: all of the VNet’s VMs had many
flows to port 10000 which is why they all had high scores

(c) Temporal behavior
(comparison to VNet distribution)

Figure 4: Comparing compromised VMs to VMs in their
VNET. µ: average Bps of a VNet to each destination; σ:
standard deviation. (a) Distribution of flows to VMs in the
VNET. (b) Distribution of flows to IPs outside of the DC. (c)
Temporal behavior.

(≥ 2). PrivateEye’s high AUC shows using ML with the right
features helps avoid such false positives.
5 PrivateEye’s design requirements
Our design requirements for PrivateEye are:
GDPR compliance. The European law on data privacy
(GDPR [24]) mandates any personally identifiable informa-
tion (PII) should be tracked in case the customer wishes to
inspect (or delete) it. Operators are required to answer cus-
tomer requests within 48 hours and have two choices: join
and tag data with meta-data to be able to identify which cus-
tomer it relates to or avoid storing any and all PII data. For
example, a VM’s public IP (and the IPs it communicates with)
has to be mapped to the customer’s account and stored with
all network telemetry from their VM. Public IPs are dynami-
cally allocated and would need to be tracked in time which
can result in significant and unnecessary overhead.

Even without such customer requests, this data has to be
deleted from all company data-stores after 30 days to avoid
violations. GDPR makes it expensive to sustain solutions
relying on PII data. PrivateEye relies on 10-minute flow
pattern summaries and ignores specific IP addresses.
Low runtime overhead. PrivateEye should have low per-
formance overhead, should be able to run at DC-scale, and
shouldn’t interfere with ongoing traffic. Many, state-of-the-
art, compromise detection systems have high performance
overhead and cannot be used extensively in the cloud. For
example, DPI (e.g., [15]) adds additional per-packet delays
which prohibits serving traffic at line-rate (40− 100 Gbps).
Packets may be mirrored to dedicated middleboxes that can
run DPI off the critical path but our experience with simi-

443

80

1:50 AM 4:10 AM 9:50 AM

10:00 AM 10:10 AM 10:20 AM

10:30 AM 10:40 AM 10:50 AM

11:00 AM 11:20 AM 11:30 AM
VNet after compromiseOther entitiesVNet before

compromise
Figure 5: An example of a VM’s flow pattern before and after
it was compromised.

lar systems (e.g., EverFlow [30]) show they put significant
load on the network and that they are hard to scale. We can
re-implement DPI based solutions using new programmable
switches [31] to improve performance, however, these solu-
tions are not yet ready for production as packets need to be
re-circulated [32] which prevents serving packets at line-rate.
Detect malware in the wild. Many past approaches observed
malware in a sandbox to build behavioral signatures (e.g., [7]).
Malware may change its behavior if it detects it is in a sandbox
(e.g, [33]). OBD detections from production VMs provide a
rich dataset about malware behavior in the wild which Priva-
teEye can learn from. PrivateEye uses this learned behavior
to detect other instances of compromise.
Ability to generalize. Customers constantly bring up new
VMs and shut-down old ones. We should not rely on learning
from specific VMs or even customers. PrivateEye can gen-
eralize to VMs (and even customers) not in its training set:
our evelauation test sets (see 8) comprises of customer and
internal VMs and VNets that are never in the training set.
Operate as a first line of defense. OBDs use extensive mon-
itoring. PrivateEye has a more restricted view of the VMs. It
is used as a preliminary detector to avoid unnecessary penalty
(OBD mandate) on a large number of customers. Its goal is
to reduce monitoring overhead and operational complexity
and to protect all VMs without needing customer permission
until further investigation is necessary. Once it flags a VM
as suspect, it can raise an alert to the customer to ask for
permission to investigate the VMs further through other more
invasive and expensive techniques at the operator’s disposal.

CA

Analysis agent

HDFS

VM VM VM

CA

VM VM VM

VM

VM

VM

Run-time workflow
Offline training workflow
Both online and offlineData center network

Unprotected VMs

VMs with OBDs

Honeypots
Predict Train

vSwitch vSwitch

Distributed
Store

Figure 6: System overview of PrivateEye.
For example, our operators have access to VHD-scanners and
can also use DPI-based systems on one-time packet captures
of the VM’s traffic1. PrivateEye provides “just-cause” for
operators to use these tools when it flags a VM as suspect.
These approaches are automated and can be run without oper-
ator intervention. PrivateEye assigns scores to each detection
allowing operators to pick the right tradeoff between the true
and false positive rates for their needs. PrivateEye is not
meant to fully replace OBDs, we encourage customers who
require stronger protections to opt-in to OBDs providers offer.
6 System Design
PrivateEye runs continuously and scales to large clouds with
low overhead. The privacy sensitive fields it collects are
anonymized using a keyed hash message authentication code
(HMAC) during data collection and deleted once we construct
the features. Figure 6 shows PrivateEye’s design. We use two
arrow types to differentiate training and run-time workflows.
PrivateEye has two parts: the collection agent (CA) and the
analysis agent (AA). The CA is responsible for data collection
and the AA for analysis and detection. We next describe the
key ideas behind its design:
A VM’s flow pattern changes when it is compromised. We
have observed a VM’s flow patterns change once compro-
mised. Almost all malware we studied (using our honeypots)
changed the machine’s DNS, few connected to the same set
of external IPs, some connected on the reserved port for NTP
to non-NTP servers, and those mining for digital currency
had flows on port 30303. We ask whether these changes are
visible on VMs running real workloads (as opposed to idle
honeypots)? We leverage 1-month of our OBD detections to
answer this question and compare the flow pattern of com-
promised VMs to others in their VNet. Within each VNet,
we see similar behavior for all VMs. But when the VM is
compromised, it starts to deviate from the typical behavior of
other VMs in its VNet (Figure 4).

Figure 4 a-b compares the spatial distribution – the fraction
of flows going to other VMs belonging to the same customer
vs. to other VMs in the DC vs. machines outside of the
DC – of flows originating from VMs sharing a VNet. We
observe only 30% of the non-compromised VMs have flows
destined to IPs outside of their VNet whereas this number is
as high as 50% as we get closer to when the compromise was
detected and roughly 80% around the time of detection. It

1These are only collected if the VM is suspected.

seems, at least in these instances, after the VMs were com-
promised they tended to communicate more with destinations
outside their VNet. The VM’s temporal behavior also shows
changes in behavior around the time of compromise (Figure 4-
c). The volume of traffic each VM sends to individual IPs is
often close to the VNet average but when compromised, VMs
exhibit increased deviations from this mean. Our manual
analysis of their flow patterns showed noticable changes in
behavior after compromise. We omit most of this analysis
due to space restrictions but show one example. We show
(Figure 5) the flow pattern of a 1st-party VM before it was de-
tected as being compromised (11:30 AM). We see the VM’s
flow pattern change drastically from its, previously stable,
normal behavior when we get closer to the time of detection.
We use these insights when constructing features.
We can get accurate flow-summaries from the vSwitch
with low overhead. The vSwitch [27] processes all packets
of all flows to/from the VM and keeps simple, per-flow state
(Table 2) for all active flows. PrivateEye leverages this feature
to obtain accurate per-VM flow summaries (see §7.1).
Using OBDs to create labeled data for training. Private-
Eye is trained on data from VMs running OBDs. Our DCs run
two types of OBDs: (a) Those running on our 1st-party VMs:
these VMs often have in-kernel instrumentation for detecting
compromise. (b) Those running on customer VMs: customers
can opt-in and use OBDs and if they do so, they can deploy
and run them inside their VMs. All of the OBDs we use are
built on top of Defender [34] (Windows) and ClamAV [35]
(Linux) but also monitor irregular login behavior, system calls,
and many other parameters. Although OBDs are intrusive
the system as a whole meets our privacy requrements: Azure
owns all 1st-party VMs, and the only 3rd-party VMs where we
use OBDs are those where the customer has explicitly given
permission. Note, customer OBDs are less common but, in-
terestingly, despite their lower popularity most compromise
detections are from these OBDs (see §9).

We hypothesize many compromised VMs exhibit similar
flow-pattern changes to those compromised VMs that were
detected by OBDs; because often attackers run attacks against
IPs in the cloud irrespective of the services deployed behind
those IPs or who owns them (non-targetted attacks §2). Our
evaluations confirm this hypothesis as PrivateEye is tested on
internal and customer VMs and workloads that are not in the
training set and achieves an AUC of 0.96.
Using supervised-learning to learn flow-pattern changes.
Anomaly detection and clustering approaches seem natural
approaches for solving our problem. We have tried anomaly
detection [36], cross entropy [37], ECP [38], TSNE [39], and
k-means [40], and also AutoEncoders [41] but anomalies
were routinely observed in many VM’s lifetimes and it was
hard for operators to distinguish between anomalies that were
caused by malware and those which were intended VM behav-
ior. Even a tainting + clustering approach i.e., marking points
in the clusters with compromised examples as compromised,

Metric Description
Time Timestamp of data collected
Direction Incoming to/Outgoing from VM
Anonymized Source IP Source IP in first SYN packet*
Anonymized Source VNetId VNetId of source IP if any*
Anonymized Dest IP Destination IP in first SYN packet*
Anonymized Dest VNetId VNetId of destination IP if any*
Protocol Protocol if known
Dest Port Destination port in first SYN packet
BPS In # of bytes/sec incoming to VM
BPS Out # of bytes/sec outgoing from VM
PPS In # of packets/sec incoming to VM
PPS Out # of packets/sec outgoing to VM
Unique Flows # of unique 5-tuples collected
Total Flows # of unique 5-tuples

(both collected and missed flows)

Table 2: Data collected by the CA (not the features). *These
fields are removed entirely after feature creation.

resulted in higher false positives compared to PrivateEye.
We need to detect specific changes that point to the VM

becoming compromised (as opposed to finding all anoma-
lies). We chose supervised learning and specifically random
forests as they have low overhead. They are debug-able, ex-
plainable, highly accurate, and resilient to overfitting [42].
They construct multiple decision trees over a random subset
of features during training. Each decision tree uses a greedy
algorithm to (1) iteratively pick features with the most infor-
mation gain [43], (2) makes a decision using values of each
feature, and (3) iterates until it reaches a “leaf”. Leaves either
consist of samples with a single label, or have samples where
one label is the majority. At run-time, the algorithm traverses
the tree for each test case and returns the majority label (from
training) at the leaf. Random forests output the mean predic-
tion across trees and the fraction of trees that predicted each
label. We use this fraction as a score to measure confidence
and to control PrivateEye’s false positives. Operators use it to
decide what to do. We set the model’s hyperparameters (e.g.,
max-depth) using Bayesian optimization [44].
Using informative features. In section §7.1 we will describe
PrivateEye’s CA and how it collects the raw data in Table 2.
Privacy-sensitive fields, such as the IPs and VNet ID, are
anonymized. Here, we describe the raw data itself, the chal-
lenges in extracting privacy-preserving features from this raw
data, and how we create these features.

PrivateEye uses three sets of features: graph-based,
protocol-based, and aggregate features:
(1) Graph-based features. We want to detect the changes in a
VM’s flow pattern that indicate it is compromised. The IPs
the VM connects to are a crucial part of these flow patterns
but using them as features is not possible for two reasons:

Privacy – IPs are anonymized and removed once the fea-
tures are created. We cannot map IPs geographically nor can
we classify them according to the AS that owns them.

Data-sparsity – using IPs as features results in a large fea-
ture vector (232) and by extension an extremely sparse train-
ing set. The curse of dimensionality dictates: to maintain
accuracy, as the number of features increase, the number of
training samples must also increase [45]. This is especially
problematic for training supervised models as compromised

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

All data
Compromised
Non compromised

%
 o

f v
ar

ia
n

ce
 c

ap
tu

re
d

by
 fi

rs
t

n
 P

C
s

n (first n principle components)
Figure 7: Variance captured by the first n PCs.

VMs are rare – our datasets are imbalanced and have more
non-compromised examples and far fewer compromised ex-
amples. Using IP-prefixes is not possible: the smallest usable
prefix size (to avoid spanning multiple ASes) is \24 but this
results in a 224 feature vector which is, again, too large.

Proior work [20, 28, 46, 47] have acknowledged this prob-
lem and attempted to solve it by operating at the granularity
of flows instead of VMs – classifying individual flows as ma-
licious to avoid using IPs as features. While finding malicous
flows is useful when implementing ACLs or firewalls it is
hard to identify compromised VMs without viewing their flow
patterns as a whole and, in some cases, comparing the VM’s
flow patterns to that of others. Other works in networking
(e.g., [42, 48, 49]) have also used ML. But IPs are not relevant
to the problems they tackle and are not used as features. But
in the context of compromise detection, IPs play an impor-
tant part. We present a novel feature construction approach
which allows us to summarize graph evolutions, including
IP-related changes, using temporal and spatial features. We
do not need access to the specific IPs for constructing these
features (avoiding privacy problems) nor do we need to use
232 feature-vectors (avoiding data-sparsity problems). Our
intuition, based on the observations we presented earlier, is
that to detect changes in a VM’s flow pattern, features should
describe its change both in time and space and compare it not
just to its own past behavior but also to others.

Temporal graph-features: capture how a VM’s flow pat-
terns change over time compared to itself and other VMs.
We will first describe the intuition behind our solution in the
context of an example:

Suppose a compromised VM connects to a C&C server
with IP a.b.c.d. We can, for all VMs in the DC, build the CDF
of bytes sent to IP a.b.c.d over time. If only a few of the other
VMs in its DC have been compromised, flows to IP a.b.c.d
from the compromised VM would fall in the top portion of
this CDF, e.g. the top 10%. The flow to IP a.b.c.d falls
into this top 10% interval because such flows were unique
to compromised VMs – by mapping the flow to this interval
we capture the relevant information for detecting whether the
VM is compromised. Other, similar changes are also possible.
This is why we use a combination of four such CDFs:

• For each VM, the distribution of each flow according to
its “Bps out” over the course of one hour.

• For each VM, the distribution of all flow according to
their “Bps out” over the course of 10 minutes.

• For each remote IP, the distribution of all flows to that

IP address across all VMs in the DC according to their
“Bps out” over 10 minutes.

• For each remote IP, the distribution of all flows connect-
ing to that IP address across all VMs in the DC according
to their “Bps out” in 1 hour.

We divide each CDF into five buckets: top 1%, top 1-
10%, middle, bottom 1-10%, and bottom 1%. Flows are then
projected to a lower dimension based on the bucket they fall
into on each of these CDFs . The results are then combined
with other features for each VM in each 10 minute period.

These CDFs describe a VM’s flows through time as com-
pared to itself and other VMs in the same region. There
are other possible CDFs we could use. Finding the optimal
selection is the subject of future work.

Spatial graph-features: We classify each flow in one of
three categories based on its endpoints: (a) both are in the
same VNet (b) both belong to the cloud provider (different
VNets) (c) one is an external IP. We aggregate each metric
in Table 2 for each group. We can build these groups using
the anonymized VNetIds (which we remove after feature
construction). Specifically, the same anonymized VNetIds
point to VMs in the same VNet, different ones point to VMs
in different VNets, and absent Ids point to external IPs.
(2) Protocol Features. A flow’s destination port can help
identify the application protocol being used. Often attack-
ers/malware use specific protocols for communication. There
are numerous examples we found when deploying PrivateEye
where the set of protocols used by the VM changed once it
was compromised. We created a list of 32 ports of interest
including 22 (SSH), 53 (DNS), 80 (HTTP), 123 (NTP), 443
(TLS), 30303 (mining digital currency), and 3389 (RDP). For
each of these ports, we aggregated five of the metrics shown
in Table 2 to construct six features: “Direction” (incoming vs.
outgoing), “PPS In”, “PPS Out”, “BPS In”, “Unique Flows”.
(3) Aggregate Features. Finally, we also use the total num-
ber of bytes sent/received and the total number of incom-
ing/outgoing connections as additional features.
There is no good linear summary of the feature-set. We
have constructed k = 2116 features. We next check whether
there is a more compact representation of the data using
Principle Component Analysis (PCA) [50]. Each principal
component (PC) corresponds to an Eigenvalue of the data,
and the sum of these Eigenvalues equals its variance. We
find we need to keep 75% of the PCs to keep 99% of the
variance (Figure 7). Therefore, PCA is not a good candidate
for dimensionality reduction in this problem.

Interestingly, if we only focus on compromised VMs, we
see 99% of the variance in the dataset can be captured with
only 16% of the PCs: the space of compromised VMs (as
described by these features) is more compact. But, there is
little overall linear dependence across features. This is yet
another motivation for using information theoretic and/or ML-
based techniques as the number of features is large and it is
hard to build human-tuned heuristics using these features.

0 1000 2000 3000 4000 5000 6000 7000 8000

(a) rate-limit
0

20

40

60

80

100

%
of

(V
M,

 10
 m

in)
 pa

irs
ex

ce
ed

ing
 th

e r
ate

-li
mi

t

Figure 8: Percentage of (VM, 10 minute) pairs (y-axis) with
more than n (x-axis) flows.

7 System Implementation
We next discuss each of PrivateEye’s building blocks in more
detail and describe how they are implemented in practice.
7.1 The collection agent
A highly performant CA is crucial in achieving our perfor-
mance and scalability requirements. We have deployed our
CA on all hosts across all our DCs. It runs continuously and
polls the vSwitch for the data in Table 2 every 10 seconds.
The vSwitch records this data for each flow and for each VM
within this period: the choice of polling period does not result
in data loss but only impacts CPU usage.

The interface to the vSwitch uses read locks2. Although
the vSwitch has higher priority to obtain the lock, the CA
limits its query to 5000, randomly selected, flows per 10s
and per VM to reduce the impact of contention. If the total
flows within the polling period exceed this limit for a VM, the
vSwitch reports the total. To reduce the overhead of saving
data, the CA aggregates some of the fields in Table 2 over
10-minute epochs. This aggregation is on the fields that store
bytes, packets, and flows, and we also aggregate flows based
on their destination port. As a result, a 10-minute dataset
from a region, with over 300,000 servers, is 109 MB.

To choose the 5,000 limit we looked at the 10s epochs with
more flows than any given limit, for one hour, in one DC
(Figure 8). Only 4% of samples have more than 5,000 flows.
Thus, using this limit results in data-loss for only 4% of the
samples. Our data shows on average VMs have 1843.9 ± 9.5
flows in each epoch. The distribution has a long tail; when
the number of flows exceeds 5,000 the number of flows is
18890.6 ± 104.0. We accept this loss and show in §8 that we
can detect compromised VMs despite this limit. The vSwitch
team confirmed the vSwitch continued to process packets at
line-rate when using this limit.

We designed the CA from scratch despite systems such
as NetFlow [51] and IPFix [52], which are already deployed
in our DCs. These systems are used for traffic engineering,
DDOS protection, and other tasks. They run on our core
routers and sample 1 out of 4096 packets traversing the net-
work core. Because of this sampling, they are biased towards
monitoring “chatty” VMs and “elephant” flows. Also, they do
not capture flows that do not traverse the network core. There-
fore, IpFix/NetFlow are not adequate for PrivateEye which
requires more complete knowledge of per-VM flow patterns.
Work such as [53] show the shortcomings of such monitoring

2The table is also used by other systems that need a consistent view.

Region 1 Region 2
0

0.02

0.04

0.06

0.08

0.1

(b) Number of flows per VM

E
m

p
ir

ic
a

l
C

D
F

(a) Ratio of VMs in IpFix to CA#
 o

f V
M

s
in

 I
P

F
ix

 /
#

 o
f V

M
s

ca
p

tu
re

d
 b

y
th

e
C

A

Figure 9: (a) Fraction of VMs captured by the CA also cap-
tured by IpFix. (b) CDF of number of flows captured per
(VM,10 min) for IpFix vs. the CA (x-axis log scale).

systems even when used in heavy-hitter detection systems.
Other in-network monitoring systems such as [4, 54] are also
inadequate as they require a specific type of sampling unsuit-
able for PrivateEye [4] or require hardware upgrades currently
not possible [54]. PrivateEye limits the number of records
it extracts in each 10s. This limit also results in occasional
data-loss but does not suffer from the same problems. The
limit is applied to each VM separately and doesn’t bias the
dataset towards chatty VMs. We capture data from the host’s
vSwitch which has all records for the VM’s flows irrespective
of where they are routed. The CA is a software component
on the host and requires no hardware changes. IPFix captures
fewer flows per VM than our CA and also misses capturing
traffic from a large number of VMs (Figure 9).

The CA has low overhead – typical usage of only 0.1% of
the host CPU and a maximum of 15 MB of RAM.

Finally, we note the CA can also be implemented using
programmable switches. We use vSwitches as they are more
widely deployed in our networks (and those of others).

7.2 The Analysis Agent
The AA has two roles: (1) train a classifier using past detec-
tions of OBDs (offline), (2) to run the classifier and predict
which VMs are compromised (online). It is alerted when
there is a new detection from any of the OBDs on any of
the VMs and tags the data from those VMs with a "compro-
mised" label. This data is then added to the training set. This
training set is persisted in a distributed data store. The AA
is periodically retrained using this data to keep up with any
changes in the set of malware or the OBDs themselves.

Data collected by the CA for all other VMs (those without
OBDs) is sent through a stream processing pipeline where we
create the features. These features are then passed through the
RF model which determines whether the VM is compromised.
We are in the process of deploying the AA in our DCs. We
describe this deployment in more detail in §9.

8 Evaluation
We evaluate PrivateEye using data from Microsoft’s cloud.
We have shown parts of the evaluation – which helped justify
our design choices – in earlier sections (e.g.,§7.1). In this
section, our goal is to answer questions about PrivateEye’s
accuracy (§8.2), the features that help it achieve this accuracy
(§8.2), the causes behind its mis-classifications (§8.2), and its
performance overhead (§8.3). We also looked into how it can

Leg
iti

m
at

e V
M

s
Com

pr
om

ise
d

VM
s

C
D

F

0 5 10 15 20
0

50

100

False positive rate (%)
(a)

Tr
ue

 p
os

it
iv

e
ra

te
 (%

)

VM Score (suspiciousness)
(b)

Figure 10: (a) PrivateEye’s ROC. (b) PrivateEye’s scores
(CDF).
be used in the context of an example use-case (Appendix §A).

8.1 Methodology
Data. Each point, (xi,yi), in our data corresponds to a VM
in a 10 minute period, where xi is the 2116×1 feature vector
described in §6 and yi is a label: compromised or legitimate.
Labeling. We use OBDs from over 1,000,000 internal and
customer VMs to create labeled data for evaluation. These
VMs run diverse workloads and use both Windows and Linux
OSes. A direct implication of this labeling is that PrivateEye’s
accuracy can only be as high as OBDs. OBDs can have false
positives (negatives), but because operators use them to pro-
tect their own 1st-party VMs, we assume these are negligible.
OBDs with higher accuracy only improve PrivateEye.

We train and test PrivateEye on all detections from these
OBDs – we do not restrict PrivateEye to detecting a particular
type of compromise: its goal is to detect any compromise
OBDs can detect. Most OBD detections were from (different)
customer VMs (0.87 of the total compromises) – see §9 for
further discussion on this. For most OBD detections we
also saw external, network-level, signs of malicious behavior.
When available, we also report on results from the operator’s
manual investigations to confirm their detections.
Train-test split. We need to split the data into a train and
test set. It is important to do so correctly: if there is informa-
tion leakage between the train and test set we may artificially
boost accuracy. For example, we cannot split the data by time
because some VMs will have lifetimes spanning both the train
and test set. In training, the model may learn the behavior of
the VM itself as opposed to whether it is compromised, and
when used in practice, it would have much lower accuracy
than what we see in testing. The test set should be representa-
tive of how the system is used in practice – it is tested on VMs
it has never seen before (VMs that are not in the training set).
These constraints imply the VMs in the training set cannot be
in the test set. We take an even more conservative approach:
We split the data by VNet. This ensures each VM, and those
in its VNet that have similar workloads (§2), only appear in
either the training or the test set but not in both.
Addressing class-imbalance. RFs need a similar number
of training samples for each label to achieve high accuracy.
Unfortunately, our data suffers from class-imbalance: a small
fraction of our data is labeled compromised (only 0.1%).
This can lead to an RF that classifies everything as legitimate
while achieving (artificial) high accuracy. We use a standard
technique to solve this issue: down-sampling [55]. Down-

0 0.5 1 1.5 2
0

50

100

T
ru

e
 p

o
si

ti
v

e
ra

te
 (

%
)

False positive rate (%)

Figure 11: ROC for per VM classification.

sampling randomly chooses a subset of the more popular
label for training. But too much down-sampling can reduce
the volume of data available for training which can also hurt
accuracy. We use Bayesian Optimization to find the right
trade-off. To improve accuracy, we use the ‘balanced’ option
in SKLearn’s RF function which weights the samples for each
label to make up for the lower number of samples.
Performance metrics. PrivateEye’s output for each sample
xi at time ti is a score and a decision on whether the VM was
compromised in the 10 minute epoch prior to ti. The score
measures the level of suspicion towards that VM. Operators
can use it to decide whether to investigate the VM further.

We use an ROC to measure accuracy – we vary the thresh-
old applied to the scores to decide whether the VM is compro-
mised: ROC shows the true positive rate (TPR) vs the false
positive rate (FPR). The area under the ROC (AUC) summa-
rizes the significance of the ROC: an AUC of 1 indicates a
perfect test, and an AUC of 0.5 indicates a random test [56].

8.2 Classifier Evaluation
Our goal in this section is to answer questions such as:

• What is PrivateEye’s accuracy?
• What causes PrivateEye’s false positives/negatives?
• How does PrivateEye’s RF compare to other models?
• Are the features we created effective?
• How does PrivateEye’s sampling limit affect accuracy?
We next describe the answer to these questions in detail.

Accuracy: PrivateEye has a high AUC (0.96). We use 20-
fold cross validation and show the mean of the 20 outputs and
the 95th percentile confidence interval (Figure 10-a). Priva-
teEye can detect 95.77% of compromised samples with 1%
FPR. The scores are correlated with the labels (Figure 10-b):
the gap between the distribution of scores for compromised
and legitimate VMs confirms the accuracy of the model.
PrivateEye’s long-term accuracy is also high. PrivateEye
checks each VM every 10 minutes to see if any are compro-
mised. But what if operators want to do so less-often e.g.,
before the VM is shut-down (once over the VM’s life-time)?
They can aggregate the scores across consecutive samples to
do so. Many aggregators are possible: we use the sum of all
scores over the lifetime of the VM (other aggregators achieved
similar results). The ROC is produced using this new score
(Figure 11). PrivateEye’s accuracy remains high (90.75%
TPR for 1% FPR) albeit slightly lower than before – possibly
due to the longer lifespan of legitimate VMs: compromised
VMs are typically shut-down more quickly resulting in a
lower aggregated score. This result also confirms the ROC in

Figure 10-a is not dominated by samples from a single VM.
We further experimented with different choices of n, where

n is the number of 10-minute intervals that need to pass before
we make a prediction. The ROC curves were bounded by
those of Figure 10-a and b but do not show an explicit trend.
PrivateEye’s FNs were mostly OBD false positives. Priva-
teEye’s FNR (average) is 5%. This implies (on average) 5%
of samples were reported incorrectly as legitimate. But most
(70%) of these samples were actually false positives (FPs)
of the OBDs (remember OBDs tend to be conservative as
they protect internal VMs) – operators investigating the alerts
identified them as FPs e.g, in one case the investigation re-
port mentioned: “This was a FP detection as the vulnerability
scanner contains data to scan for CVE-2006-3439”.

Our investigations of PrivateEye’s FNs revealed other in-
teresting information. For example, we grouped FN samples
based on which VM they describe and found 86% were cases
where all samples for the VM were labeled legitimate. These
VMs are part of the training set for other folds during cross
validation: it appears PrivateEye is resilient to errors in the
labels it uses for training (given the 95% TPR). We need to
investigate this point further to confirm this hypothesis.

Some VMs had a mix of compromised and legitimate de-
tections (14% of FN samples). These VMs were involved in
port-sweeping attacks but we found no correlation with the
number of active flows or the volume of traffic. OBDs assign
a “severity” to their detections to report their confidence in
the detection. All of PrivateEye’s FNs were low severity.
PrivateEye’s FPs have similar flow-patterns to compro-
mised VMs. We manually inspect the flow patterns of VMs
PrivateEye mistakenly reported as compromised. Most such
VMs had a small number of flows to non-reserved ports. In a
few cases, the VM had only a small number of flows on the
DNS port (53) to another VM in its VNet (VMs in the same
VNet belong to the same customer). In another instance, the
VM had no outgoing flows, but multiple VMs from the DC
were attempting RDP connections to it. None of the VMs in
these VMs’ VNets had similar flow patterns. These behaviors
are similar to compromised VMs which explains why these
VMs were mistakenly flagged by PrivateEye.
PrivateEye detected attacks OBDs missed. We observed
two separate instances where SQL servers were conducting
port-sweeping attacks on another VM. In both cases the attack
lasted for one 10 minute epoch but PrivateEye detected it.
OBDs did not. These VMs were only active for a short
duration (less than a few hours). The short period of the
attack and the short life-span of the VM may explain why the

0 1000 2000 3000
0

0.5

1

0 1000 2000 3000 4000
0

0.5

1

Number of false positives per VM Number of samples in one day for VMs

C
D

F

(a) (b)
Figure 12: (a) Number of FPs for a VM in a given day. (b)
Number of samples in a day for VMs with an FP.

False Positive (%)
0 10 20 30 40

0

50

100

Logistic Regression
Nueral Network
KNN

F
al

se
 N

eg
at

iv
e

(%
)

Figure 13: Performance of other ML algorithms.

OBDs did not detect these attacks.
Consecutive detections can help reduce FPs. We ran sam-
ples for legitimate VMs in the test set through PrivateEye
and grouped the results by VM. For over 60% of these VMs
PrivateEye had only a single FP (Figure 12-a): we could use
consecutive detections as a potential means of reducing FPs.
For example, we can change the detection granularity to every
20 minutes instead of 10 where we require two consecutive
detections to declare a VM compromised. This approach can
result in reduced true positives – as seen earlier in the more
extreme example where we make one decision in the entire
lifetime of the VM. Further understanding of PrivateEye’s FPs
requires manual inspection from within the VM but, sadly,
we are unable to report on the results of such analysis.
Random forests (RFs) are a good first choice [14, 48, 57].
We compared RFs with many other ML algorithms and show
RoCs for a subset (Figure 13). RFs outperformed all other
models we tried. The closest algorithm to the RF were neural
networks3 (NN) which have an 81% TPR for a 1% FPR.
All features contribute to the detection. We have seen there
is no compact, linear, representation of the features that would
capture all the information in the data §6. We dig deeper to
see which class of features are most helpful. To do so: (1) we
use each class individually (Figure 14-a), and (2) we remove
each class altogether (Figure 14-b). Removing graph fea-
tures individually (spatial, temporal) has little impact on TPR
(0.2%) but removing both can drastically reduce it (18%).
Most classes (except spatial features) can find compromised
VMs with a TPR ≥ 70% and an FPR ≤ 5%. We conclude
all features significantly contribute to detection (though they
are not equally important). To validate these observations,
we experimented with various feature selection techniques
(Figure 15). We refer the reader to [58] for the description of
these techniques due to space restrictions.

Aggregate features have good predictive power: a TPR
of 77.7% for 5% FPR when used as the only features and
resulting in 7% drop in TPR when removed: were most com-
promised VMs engaging in volumetric attacks? We found this
not to be the case – the maximum traffic sent by compromised
VMs across all samples was 2.6 MBps (median 0.0 Bps) vs.
10.3 GBps (meidan 189.62 Bps) for legitimate VMs.
Comparison to other VMs helps detection. Graph features
compare the VM to others by mapping flows onto intervals on
various CDFs (see §7.2). What happens if we use CDFs that

3We used a single hidden layer with 1000 neurons. Experiments with ad-
ditional hidden layers in the NN and different numbers of hidden dimensions
produced similar results.

Tr
ue

 p
os

iti
ve

 ra
te

 (%
)

0 5 10 15 20 25 30
-20

20

40

60

80

100

Spatial features
Temporal features
Protocol features
Aggregate features

False positive rate (%)
(b)

False positive rate (%)
(a)

50 10
0

50

100

No spatial features
No temporal features
No port features
No aggregate features

No spatial or temporal features

Figure 14: (a) Contribution of each feature class to the overall
accuracy. (b) ROC without each feature class.

compare a VM with its own history instead of that of all VMs
in the DC? The TPR drops to 80% for 1% FPR (Figure 16)
indicating the comparison to other VMs is indeed useful.

The choice of sampling limit is important. The CA rate-
limits the number of flow entries it queries from the vSwitch
to 5,000 every 10 seconds. This rate-limit allows us to capture
over 97% of each VM’s flows (§7.1). We next measure the
impact of this rate-limit on the TPR by lowering it. We cannot
simulate this behavior accurately by “down-sampling” our
data as we have aggregated the flows to remove the source port
and IP addresses. Instead, we change the rate-limit threshold
across all US regions for two months and collect a new dataset.
We cannot do a complete sensitivity analysis with multiple
rate-limits as this would be costly – we need to capture at
least a month’s worth of data for training. Therefore, we limit
our experiment to just one threshold: 900 flows per 10 second
interval. Such a rate limit will result in data loss for over
30% of our training samples (Figure 8). The results show a
significant decrease in accuracy (Figure 17-a): 80% TPR for
40% FPR. We conclude PrivateEye needs to capture as many
flows as possible to maintain high accuracy.

More training data helps compensate for lower rate-
limits (Figure 17-b). We start with 92% TPR for 59.6%
FPR, and by just adding 8 more days worth of data to the
training set it can reach the same TPR for 23.23% FPR.

PrivateEye is unable to detect the type of compromise.
PrivateEye cannot specify the type of malware installed on
the VM. Our dataset contains additional information about a
fraction of the compromised VMs e.g., compromised through
SSH or RDP brute-force, malware found, port-scanner, port-
sweeper, SQL-injection, RDP/SSH brute-forcer, spammer, or
others. However, PrivateEye has low accuracy when identi-
fying the type of compromise (70% TPR for 1% FPR) – it
is known that multi-class classifiers tend to have lower ac-
curacy [42]. Besides, not all detections have this additional
information.

0 5 10
0

50

100

Variance threshold
Variance percentil
Select FPR, using chi2
RFE
Per feature class, RFE
Per feature class, select FPR

False positive rate (%)

T
ru

e
p

os
it

iv
e

ra
te

 (
%

)

Figure 15: ROC for different feature selection methods.

0 2 4 6 8 10
0

20

40

60

80

100

False positive rate (%)

T
ru

e
po

si
ti

ve
 r

at
e

(%
)

Figure 16: ROC: Impact of the choice of CDFs.

8.3 Performance overhead
One motivation for designing PrivateEye was the need to scale
intrusion detection systems to the entire DC. Here we evaluate
whether PrivateEye meets this scalability requirement:

• What is the memory and CPU usage of the CA?
• What is the impact of the CA on ongoing traffic?
• What is the expected load on the AA?
• What is the overhead of training the AA?

The CA has low CPU and memory overhead. The CA is
deployed across all production hosts of a large cloud provider
for over 2 years and includes data for over 15,000,000 VMs
and 300,000 VNets in the US alone. We chose 100 hosts ran-
domly from DCs across the globe and recorded the CA’s CPU
and disk usage both in the morning and afternoon. Figure 18
shows its memory usage. Its CPU usage remained bellow
0.1% across all hosts at all times.
The CA does not impact ongoing traffic. Our experience
with the CA is that it causes no impact on ongoing traffic. This
is in part because the CA has lower priority when obtaining
the lock on the vSwitch table. We instrumented the CA on
one host to record the time spent, from user space, in each
query to the vSwitch. The time captures the time spent in
contention on the vSwitch table’s read-lock and the time it
takes to read x entries (where x is the CA rate-limit). There
are 8 VMs on the host. We run a SYN flood attack against one
of them to simulate different levels of load. We show the time
for attacked and non-attacked VMs (Table 3). The results
show both the rate-limit and the load (volume of traffic) on
a given VM affect the time spent querying the vSwitch for
data about that VM but not for data about other VMs. The
CPU usage of the CA remained below 0.1% throughout this
experiment.
The load on the AA is acceptable. PrivateEye’s AA is
trained offline using data from the 5% of VMs monitored
by the OBDs. The trained model is distributed across each
DC region to serve detections every 10 minutes. To quantify
the load the AA will have to handle, we looked at the number
of flow records per second the CA captured in three regions

False positive rate (%)
(b)(a)

0 50 100
0

50

100

0 10 20 30 40 50
0

50

100

No extra data
+2 days
+4 days
+6 days
+8 days

False positive rate (%)T
ru

e
p

os
it

iv
e

ra
te

 (
%

)

Figure 17: (a) ROC with a rate-limit of 900 flows per 10
seconds. (b) ROC when more data is added.

Memory used (MB)

E
m

p
ir

ic
al

 C
D

F

4 6 8 10
0

0.5

1

Morning (9 AM PDT)
Afternoon (3 PM PDT)

Figure 18: CDF of the memory usage of the CA.

both in the morning and afternoon (Figure 19). The high-
est rate is around 900,000 flows per second. We expect this
volume of data can be easily processed in 10 minute periods.
Training overhead is low. We use Bayesian Optimization
to configure our RFs which resulted in an ensemble of 158
trees with a maximum depth of 4. The average training time
for such an RF is 5 minutes and 56s± 3.76s with our two
month training set and using 172.87 GB of RAM (peak). The
high memory usage is because of the SKlearn implementation
which holds the entire dataset in memory.

9 Discussion
This section presents a discussion of the challenges and limi-
tations of a detection system like PrivateEye.
PrivateEye’s accuracy. PrivateEye is only as accurate as the
OBDs it uses. Thus, our evaluation focuses on comparing
PrivateEye to OBDs. OBDs tend to be highly accurate as
they are the only systems protecting 1st-party VMs. But, it
is challenging to guarantee a VM is legitimate. In reality, a
legitimate VM is one that passes all detectors deployed in the
DC. Should some of these VMs, in fact, be compromised it
may cause PrivateEye to have mispredictions (§8). Similarly,
we do not know precisely when a VM was compromised but
only when it was detected and some of our compromised data
may be from when the VM was not yet compromised. Our
results in §8 show PrivateEye to be resilient to mislabels.
Generalizing PrivateEye to the entire DC. In our evalu-
ations we partitioned the set of labeled VNets to create a
train/test set to emulate how PrivateEye will be used in prac-
tice. The VMs we tested PrivateEye on were those which
were absent from the training set. These VMs run both Win-
dows and Linux and span a variety of workloads including
those of customers who have subscribed to OBDs. We are rea-
sonably confident PrivateEye can detect most compromised
VMs. We would have liked to show a small-scale evaluation
of PrivateEye where we manually investigated VMs that are

rate-limit SYN flood
flows per second

Query time (µs) for
non attacked VMs

Query time (µs) for
attacked VM

900 0 585.3 ± 34.1 -
5000 0 2707.27 ± 105.4 -

10000 0 5097.56 ± 261.0 -
900 10000 780.9 ± 110.4 75276.6 ± 6387.5

5000 10000 2933.3 ± 251.7 71961.0 ± 15607.0
10000 10000 5690.1 ± 430.2 75115.5 ± 18360.8

900 50000 504.6 ± 29.2 70760.4 ± 4611.2
5000 50000 2713.4 ± 272.4 75180.8 ± 1639.3

10000 50000 5699.0 ± 289.4 46922.6 ± 9214.63
Table 3: Profiling the impact on vSwitch read-lock. The times
are mean across all samples collected over a 1 minute interval.

Flows per second (divided by 1000)

E
m

pi
ri

ca
l C

D
F

(a)

0 200 400 600
0

0.5

1

Region 1
Region 2
Region 3

(b)

0 500 1000
0

0.5

1

Region 1
Region 2
Region 3

Flows per second (divided by 1000)

Figure 19: Flows/s captured by the CA. (a) Morning (9 AM-
11AM UDT) (b) Afternoon (7PM - 9 PM UDT).

not protected by OBDs. However, we were not able to obtain
permission to do so.
Need for retraining. We can retrain PrivateEye to adapt to
changes in malware behavior. Retraining may not be enough
to allow PrivateEye to detect all such changes, but the change
in malware should increase the time to compromise of VMs
due to the attackers needing to avoid conspicuous network
flows.
The use of ML. Our work on PrivateEye is the first privacy
preserving compromise detection system that can run at scale.
Other, for example graph theoretic approaches, could be
used as well. It is unclear how such algorithms can adapt
to changes in malware behavior. This is clearer for ML mod-
els where the re-training of the model can update the system.
Graph-based NNs are also applicable [59, 60]. It may be
possible to improve the accuracy of PrivateEye even further
by using these models. This is a subject of future work.
Deploying the AA. We are currently in the process of deploy-
ing the AA using Resource Central [61]. Resource Central
allows us to store our model in Azure and serves predictions
using that model at run-time. It is highly scalable, and we
have already used it to deploy several other ML models in
production. However, there are still other questions that we
still need to answer, for example, who should build the CDFs
and what CDFs are best?
Attacks against PrivateEye. PrivateEye itself may be tar-
geted by attackers to reduce the operator’s detection capa-
bilities. Adversarial learning [62] is a sub-field of machine
learning that studies such attacks. A study of how to guard
against such attacks is beyond the scope of this work.
Higher number of 3rd-party compromises. 87% of our
compromised data were 3rd-party VMs, however, the major-
ity of monitored VMs in our data are 1st-party VMs. The
higher number of 3rd-party compromises is likely due to the
tighter protections on 1st-party VMs. We looked at how this
could influence our results and conducted preliminary experi-
ments where we eliminated all 1st-party VMs from the data.
On average we achieved 86.71% TPR for 3% FPR (83% FPR
for 2.5% TPR). We expect accuracy to improve by increasing
the number of samples (the dataset has far fewer datapoints
than the original) and by re-tuning the model.
Prior work. We have extensively evaluated the performance
of PrivateEye and have also compared it to systems currently
deployed across the provider’s production DCs. Most prior
work are not comparable to PrivateEye as they require packet
captures (or introspection) we cannot collect because we need
customer permission. PrivateEye is not a replacement for

these systems but is designed for DC operators (as opposed
to customers). Customers can continue using alternative so-
lutions to protect their VMs. In §7.1 we compared the CA
to NetFlow and showed it captures more information. The
aggregations and anonymizations applied by the CA prohibit
direct comparisons of our AA to NetFlow-based approaches.
Ethical considerations. We annonymized all privacy sen-
sitive information during data collection and removed them
after feature construction. We conducted all experiments us-
ing data from a large cloud provider. The data was either
collected from 1st-party VMs under the operator’s control or
from 3rd-party VMs where the operator had customer permis-
sion to monitor the VM. We had explicitly asked permission
for deploying the honeypots described in §2 and monitored
them closely to ensure they did not cause harm to other VMs.
These VMs were not co-located with other VMs.
10 Related Work
We discussed a number of prior works in §1,§7.1, and §7.2.
Most do not provide the scalability and privacy characteristics
we need [14–20].

Two lines of previous work relate to PrivateEye. One
shows the multitude of today’s security problems and chal-
lenges providers face [6, 63–65]. The other identify malware,
compromises, and other types of bad behavior [66–75]. These
works can further be divided into two categories:
Network traffic-based Compromise Detection. PrivateEye
does not focus on a specific type of attack – it detects any com-
promise the OBDs can detect. Many prior works identify spe-
cific types of bad behavior [5, 5, 9, 12, 19, 21, 22, 47, 57, 76–
98]. Some focus on anomaly detection ([99] is a survey of
such approaches). Nemean [100] builds intrusion signatures
from honeypot packet traces. SNARE finds spammers using
packet headers [21]. The work in [18] uses event ordering to
identify malware families. VMWall constructs application-
aware firewalls aimed at stopping attacks [11]. [90] uses do-
main knowledge about worms to construct informative fea-
tures, thus avoiding using IPs (our features capture most of
the same information). These works focus on a specific at-
tack which prevents them from comprehensive protection
of VMs. Works such as [14–16] rely on packet captures or
DPI [101] to identify malicious flows. Packet captures and
DPI at DC-scale across all hosts are not possible due to the
prohibitive performance overhead. The work of [102] relies
on malware propagation to detect the source of attack through
analyzing network traffic at key vantage points. However,
it does not target identifying the infected nodes. The work
of [83] encodes IP addresses through per-source entropies
to detect worm attacks; such an approach removes most of
the informative properties of individual destination IPs. Such
an approach is typically useful when detecting worms and
volumetric attacks. The work of [103, 104] discuss other
limitations of this approach. Perhaps the closest work to ours
is [105] which uses IPFix data from core routers to detect ma-
chines that are compromised through SSH brute force attacks.

Aside from targeting a specific form of compromise, [105]
is based on a fixed set of rules derived through observing a
limited set of malware. It is difficult for the approach to adapt
to changes in malware behavior. Finally, [47] uses external
IP reputation sources to reduce its false positives. This vio-
lates our privacy requirements. In addition, we have observed
the intersection of malicious IPs reported by commercial IP
reputation services and IPs attacking our VMs to be relatively
small (< 10%).

Many such works [9, 19, 21, 22, 57] are trained using
labels from commercial anti-virus software. Our approach
enables us to build a detector that is customized to the cloud
because our OBDs detect malicious behavior that occurs in
real cloud VMs that are running real workloads. Using OBDs
deployed on production VMs running real workloads for
labeling allows PrivateEye to avoid problems faced by works
such as [106–108] which run malware in emulation mode
or in a sandbox to obtain signatures for detection. Many
malware can detect when in emulation mode and therefore
change their behavior in such situations [18].
Binary-based Compromise Detection. One approach col-
lects malware binaries from honeypots, constructs features
from them and then uses Support Vector Machines [7]. An-
other, clusters binaries found on compromised machines
based on their structure, runtime behavior, and the context
of the host [8]. Netbait [9] crowd-sources probes gathered
from (distributed) infected machines to detect worms. An-
other approach analyzes memory dumps to construct signa-
tures of the in-memory behavior of malware [10]. Unlike
these approaches, PrivateEye performs its classification using
networking data alone. Today’s privacy requirements, perfor-
mance constraints, and the new mandates from GDPR make
the use of binary and memory inspection techniques in DCs
difficult.

Other works also exist [90, 109–113]. Many of these in-
spired PrivateEye, however, in contrast to these works, Pri-
vateEye’s design is aimed at running at scale, having strong
privacy requirements, and compliance with GDPR mandates.
11 Conclusion
PrivateEye is a privacy preserving compromise detection sys-
tem that runs at DC-scale without requiring customer permis-
sion. It achieves a true positive rate of 95.77% for a 1% false
positive rate.

12 Acknowledgements
The authors would like to thank the anonymous reviewers and
our shepherd Hamed Haddadi for their constructive feedback.
The authors would also like to thank: Srikanth Kandula, Omid
AlipourFard, Vincent Liu, Ricardo Bianchini, Weidong Cui,
Ryan Becket, Mina Tahmasbi, Akshay Narayan, Srinivas
Narayana, Shadi Noghabi, Robert MacDavid, Ishai Menache,
Landon Cox, Hongqiang Liu, and Yibo Zhu for their feedback
on our early manuscripts.

References

[1] Microsoft-Inc. Azure security center. https:
//azure.microsoft.com/en-us/services/
security-center/.

[2] Google-Inc. Stackdriver logging. https://
cloud.google.com/logging/.

[3] Amazon security solutions. https://
aws.amazon.com/mp/scenarios/security/
malware/.

[4] Masoud Moshref, Minlan Yu, Ramesh Govindan, and
Amin Vahdat. Trumpet: Timely and precise triggers
in data centers. In Proceedings of the 2016 ACM SIG-
COMM Conference, pages 129–143. ACM, 2016.

[5] Rui Miao, Rahul Potharaju, Minlan Yu, and Navendu
Jain. The Dark Menace: Characterizing Network-
based Attacks in the Cloud. In Proceedings of the
ACM Internet Measurement Conference (IMC), pages
169–182, 2015.

[6] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, You, Get Off of My Cloud: Ex-
ploring Information Leakage in Third-Party Compute
Clouds. In Proceedings of the 16th ACM Conference
on Computer and Communications Security (CCS),
pages 199–212, 2009.

[7] Konrad Rieck, Thorsten Holz, Carsten Willems,
Patrick Düssel, and Pavel Laskov. Learning and Clas-
sification of Malware Behavior, pages 108–125. 2008.

[8] Ahmet Salih Buyukkayhan, Alina Oprea, Zhou Li, and
William Robertson. Lens on the Endpoint: Hunting for
Malicious Software Through Endpoint Data Analysis.
Springer International Publishing, 2017.

[9] Brent N Chun, Jason Lee, Hakim Weatherspoon, and
Brent N Chun. Netbait: a distributed worm detection
service. Intel Research Berkeley Technical Report IRB-
TR-03, 33, 2003.

[10] Antonio Bianchi, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Blacksheep: Detect-
ing Compromised Hosts in Homogeneous Crowds. In
Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security, pages 341–352.

[11] Abhinav Srivastava and Jonathon Giffin. Tamper-
Resistant, Application-Aware Blocking of Malicious
Network Connections. In Proceedings of the 11th Inter-
national Symposium on Recent Advances in Intrusion
Detection (RAID), pages 39–58, 2008.

[12] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and
Thorsten Holz. Jackstraws: Picking command and con-
trol connections from bot traffic. In USENIX Security
Symposium, volume 2011. San Francisco, CA, USA,
2011.

[13] Hao Zhang, Danfeng Daphne Yao, and Naren Ramakr-
ishnan. Detection of stealthy malware activities with
traffic causality and scalable triggering relation discov-
ery. In Proceedings of the 9th ACM symposium on
Information, computer and communications security,
pages 39–50. ACM, 2014.

[14] Dmitri Bekerman, Bracha Shapira, Lior Rokach, and
Ariel Bar. Unknown malware detection using network
traffic classification. In Communications and Network
Security (CNS), 2015 IEEE Conference on, pages 134–
142. IEEE, 2015.

[15] Martin Roesch et al. Snort: Lightweight intrusion
detection for networks. In Lisa, volume 99, pages
229–238, 1999.

[16] Michael R Watson, Angelos K Marnerides, Andreas
Mauthe, David Hutchison, et al. Malware detection in
cloud computing infrastructures. IEEE Transactions
on Dependable and Secure Computing, 13(2):192–205,
2016.

[17] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul
Anuar, and Abdullah Gani. Evaluation of machine
learning classifiers for mobile malware detection. Soft
Computing, 20(1):343–357, 2016.

[18] Aziz Mohaisen, Andrew G West, Allison Mankin, and
Omar Alrawi. Chatter: Classifying malware families
using system event ordering. In Communications and
Network Security (CNS), 2014 IEEE Conference on,
pages 283–291. IEEE, 2014.

[19] Guofei Gu, Junjie Zhang, and Wenke Lee. Botsniffer:
Detecting botnet command and control channels in
network traffic. 2008.

[20] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: an ensemble of autoencoders
for online network intrusion detection. arXiv preprint
arXiv:1802.09089, 2018.

[21] Shuang Hao, Nadeem Ahmed Syed, Nick Feamster,
Alexander G. Gray, and Sven Krasser. Detecting Spam-
mers with SNARE: Spatio-temporal Network-level Au-
tomatic Reputation Engine. In Proceedings of the 18th
USENIX Security Symposium, 2009.

[22] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke
Lee, et al. BotMiner: Clustering Analysis of Network
Traffic for Protocol-and Structure-Independent Botnet

Detection. In USENIX Security Symposium, pages
139–154, 2008.

[23] Zainab Abaid, Mohsen Rezvani, and Sanjay Jha. Mal-
waremonitor: an sdn-based framework for securing
large networks. In Proceedings of the 2014 CoNEXT
on Student Workshop, pages 40–42. ACM, 2014.

[24] General data protection regulation. https:
//ec.europa.eu/info/law/law-topic/
data-protection_en.

[25] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin
Murthy, Albert Greenberg, David A Maltz, Randy
Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
et al. Ananta: Cloud scale load balancing. ACM SIG-
COMM Computer Communication Review, 43(4):207–
218, 2013.

[26] The good, the bad, and the ugly of ml for networked
systems. https://www.microsoft.com/en-
us/research/video/the-good-the-bad-
and-the-ugly-of-ml-for-networked-
systems/.

[27] Daniel Firestone. VFP: A Virtual Switch Platform
for Host SDN in the Public Cloud. In 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 315–328, 2017.

[28] Xin Li, Fang Bian, Mark Crovella, Christophe Diot,
Ramesh Govindan, Gianluca Iannaccone, and Anukool
Lakhina. Detection and identification of network
anomalies using sketch subspaces. In Proceedings
of the 6th ACM SIGCOMM conference on Internet
measurement, pages 147–152. ACM, 2006.

[29] David Wittman. List of commonly used
passwords. https://github.com/
DavidWittman/wpxmlrpcbrute/blob/
master/wordlists/1000-most-common-
passwords.txt, 2015.

[30] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg,
Guohan Lu, Ratul Mahajan, Dave Maltz, Lihua Yuan,
Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry
in large datacenter networks. In ACM SIGCOMM
Computer Communication Review, volume 45, pages
479–491. ACM, 2015.

[31] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[32] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon
Kim, Jeongkeun Lee, Masoud Moshref, and Robert
Soulé. Fast string searching on pisa. In Proceedings
of the 2019 ACM Symposium on SDN Research, pages
21–28. ACM, 2019.

[33] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen
McCamant, and Dawn Song. Emulating emulation-
resistant malware. In Proceedings of the 1st ACM
workshop on Virtual machine security, pages 11–22.
ACM, 2009.

[34] Windows defender. https://
www.microsoft.com/en-us/windows/
windows-defender/.

[35] Clam av. https://www.clamav.net/.

[36] Kun-Lun Li, Hou-Kuan Huang, Sheng-Feng Tian, and
Wei Xu. Improving one-class svm for anomaly de-
tection. In Machine Learning and Cybernetics, 2003
International Conference on, volume 5, pages 3077–
3081. IEEE, 2003.

[37] WJRM Priyadarshana and Georgy Sofronov. Multiple
break-points detection in array cgh data via the cross-
entropy method. IEEE/ACM transactions on compu-
tational biology and bioinformatics, 12(2):487–498,
2015.

[38] David S Matteson and Nicholas A James. A nonpara-
metric approach for multiple change point analysis of
multivariate data. Journal of the American Statistical
Association, 109(505):334–345, 2014.

[39] Laurens van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[40] John A Hartigan and Manchek A Wong. Algorithm as
136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[41] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang.
Transforming auto-encoders. In International Con-
ference on Artificial Neural Networks, pages 44–51.
Springer, 2011.

[42] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf
Schuster, and Geoff Outhred. Taking the Blame Game
out of Data Centers Operations with NetPoirot. In
Proceedings of the 2016 ACM SIGCOMM Conference,
pages 440–453.

[43] John T Kent. Information gain and a general measure
of correlation. Biometrika, 70(1):163–173, 1983.

[44] Gilles Louppe and Manoj Kumar. Bayesian
otimization with skopt. https://scikit-
optimize.github.io/notebooks/
bayesian-optimization.html, 2016.

[45] Jianping Hua, Zixiang Xiong, James Lowey, Edward
Suh, and Edward R Dougherty. Optimal number of
features as a function of sample size for various classi-
fication rules. Bioinformatics, 21(8):1509–1515, 2004.

[46] Chris Fleizach, Michael Liljenstam, Per Johansson,
Geoffrey M Voelker, and Andras Mehes. Can you
infect me now?: malware propagation in mobile phone
networks. In Proceedings of the 2007 ACM workshop
on Recurring malcode, pages 61–68. ACM, 2007.

[47] Leyla Bilge, Davide Balzarotti, William Robertson,
Engin Kirda, and Christopher Kruegel. Disclosure:
detecting botnet command and control servers through
large-scale netflow analysis. In Proceedings of the 28th
Annual Computer Security Applications Conference,
pages 129–138. ACM, 2012.

[48] Keith Winstein and Hari Balakrishnan. Tcp ex
machina: computer-generated congestion control. In
ACM SIGCOMM Computer Communication Review,
volume 43, pages 123–134. ACM, 2013.

[49] Hongzi Mao, Ravi Netravali, and Mohammad Al-
izadeh. Neural Adaptive Video Streaming with Pen-
sieve. In Proceedings of the 2017 ACM SIGCOMM
Conference, pages 197–210.

[50] Hans-Peter Deutsch. Principle component analysis.
In Derivatives and Internal Models, pages 539–547.
Springer, 2002.

[51] Benoit Claise. Cisco systems netflow services export
version 9. 2004.

[52] Benoit Claise. Specification of the ip flow information
export (ipfix) protocol for the exchange of ip traffic
flow information. 2008.

[53] Jianning Mai, Chen-Nee Chuah, Ashwin Sridharan,
Tao Ye, and Hui Zang. Is sampled data sufficient
for anomaly detection? In Proceedings of the 6th
ACM SIGCOMM conference on Internet measurement,
pages 165–176. ACM, 2006.

[54] Srinivas Narayana, Anirudh Sivaraman, Vikram
Nathan, Prateesh Goyal, Venkat Arun, Mohammad
Alizadeh, Vimalkumar Jeyakumar, and Changhoon
Kim. Language-directed hardware design for network
performance monitoring. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, pages 85–98. ACM, 2017.

[55] Chao Chen, Andy Liaw, Leo Breiman, et al. Using
random forest to learn imbalanced data. University of
California, Berkeley, 110:1–12, 2004.

[56] Area under the curve. http://gim.unmc.edu/
dxtests/roc3.htm.

[57] Greg Cusack, Oliver Michel, and Eric Keller. Machine
learning-based detection of ransomware using sdn. In
Proceedings of the 2018 ACM International Workshop
on Security in Software Defined Networks & Network
Function Virtualization, pages 1–6. ACM, 2018.

[58] Feature selection techniques in sklearn.
http://scikit-learn.org/stable/
modules/feature_selection.html.

[59] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[60] Xavier Bresson and Thomas Laurent. An experimental
study of neural networks for variable graphs. 2018.

[61] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bian-
chini. Resource central: Understanding and predicting
workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, pages 153–167.
ACM, 2017.

[62] Ling Huang, Anthony D Joseph, Blaine Nelson, Ben-
jamin IP Rubinstein, and JD Tygar. Adversarial ma-
chine learning. In Proceedings of the 4th ACM work-
shop on Security and artificial intelligence, pages 43–
58. ACM, 2011.

[63] Danny Yuxing Huang, Hitesh Dharmdasani, Sarah
Meiklejohn, Vacha Dave, Chris Grier, Damon McCoy,
Stefan Savage, Nicholas Weaver, Alex C Snoeren, and
Kirill Levchenko. Botcoin: Monetizing stolen cycles.
In NDSS. Citeseer, 2014.

[64] Hassan Takabi, James BD Joshi, and Gail-Joon Ahn.
Security and Privacy Challenges in Cloud Computing
Environments. IEEE Security and Privacy Magazine,
Vol. 8(No. 6):pp. 24–31, 2010.

[65] John P John, Alexander Moshchuk, Steven D Gribble,
Arvind Krishnamurthy, et al. Studying spamming bot-
nets using botlab. In NSDI, volume 9, pages 291–306,
2009.

[66] Sumeet Singh, Cristian Estan, George Varghese, and
Stefan Savage. Automated worm fingerprinting. In
OSDI, volume 4, pages 4–4, 2004.

[67] Archit Gupta, Pavan Kuppili, Aditya Akella, and Paul
Barford. An empirical study of malware evolution. In
Communication Systems and Networks and Workshops,
2009. COMSNETS 2009. First International, pages
1–10. IEEE, 2009.

[68] Ting-Kai Huang, Bruno Ribeiro, Harsha V Mad-
hyastha, and Michalis Faloutsos. The socio-monetary
incentives of online social network malware cam-
paigns. In Proceedings of the second ACM confer-
ence on Online social networks, pages 259–270. ACM,
2014.

[69] John P John, Fang Yu, Yinglian Xie, Arvind Krishna-
murthy, and Martín Abadi. Heat-seeking honeypots:
design and experience. In Proceedings of the 20th
international conference on World wide web, pages
207–216. ACM, 2011.

[70] Paul Barford and Vinod Yegneswaran. An inside look
at botnets. In Malware detection, pages 171–191.
Springer, 2007.

[71] Vinod Yegneswaran, Paul Barford, and Vern Paxson.
Using honeynets for internet situational awareness. In
Proceedings of the Fourth Workshop on Hot Topics in
Networks (HotNets IV), pages 17–22. Citeseer, 2005.

[72] Vinod Yegneswaran, Paul Barford, and Johannes Ull-
rich. Internet intrusions: Global characteristics and
prevalence. 2002.

[73] Jianxing Chen, Romain Fontugne, Akira Kato, and
Kensuke Fukuda. Clustering spam campaigns with
fuzzy hashing. In Proceedings of the AINTEC 2014
on Asian Internet Engineering Conference, page 66.
ACM, 2014.

[74] Seth Hardy, Masashi Crete-Nishihata, Katharine
Kleemola, Adam Senft, Byron Sonne, Greg Wiseman,
Phillipa Gill, and Ronald J Deibert. Targeted threat
index: Characterizing and quantifying politically-
motivated targeted malware. In USENIX Security Sym-
posium, pages 527–541, 2014.

[75] Luca Invernizzi, Stanislav Miskovic, Ruben Torres,
Christopher Kruegel, Sabyasachi Saha, Giovanni Vi-
gna, Sung-Ju Lee, and Marco Mellia. Nazca: Detecting
malware distribution in large-scale networks. In NDSS,
volume 14, pages 23–26, 2014.

[76] Holly Esquivel, Aditya Akella, and Tatsuya Mori. On
the effectiveness of ip reputation for spam filtering. In
Communication Systems and Networks (COMSNETS),
2010 Second International Conference on, pages 1–10.
IEEE, 2010.

[77] Christoph Dietzel, Anja Feldmann, and Thomas King.
Blackholing at ixps: On the effectiveness of ddos mit-
igation in the wild. In International Conference on
Passive and Active Network Measurement, pages 319–
332. Springer, 2016.

[78] Alefiya Hussain, John Heidemann, and Christos Pa-
padopoulos. A framework for classifying denial of
service attacks. In Proceedings of the 2003 conference
on Applications, technologies, architectures, and pro-
tocols for computer communications, pages 99–110.
ACM, 2003.

[79] Urbashi Mitra, Antonio Ortega, John Heidemann, and
Christos Papadopoulos. Detecting and identifying mal-
ware: A new signal processing goal. IEEE Signal
Processing Magazine, 23(5):107–111, 2006.

[80] Calvin Ardi and John Heidemann. Leveraging con-
trolled information sharing for botnet activity detec-
tion. In Proceedings of the 2018 Workshop on Traffic
Measurements for Cybersecurity, pages 14–20. ACM,
2018.

[81] Katerina Argyraki and David R Cheriton. Scal-
able network-layer defense against internet bandwidth-
flooding attacks. IEEE/ACM Transactions on Network-
ing (ToN), 17(4):1284–1297, 2009.

[82] KyoungSoo Park, Vivek S Pai, Kang-Won Lee, and
Seraphin B Calo. Securing web service by automatic
robot detection. In USENIX Annual Technical Confer-
ence, General Track, pages 255–260, 2006.

[83] Arno Wagner and Bernhard Plattner. Entropy based
worm and anomaly detection in fast ip networks. In En-
abling Technologies: Infrastructure for Collaborative
Enterprise, 2005. 14th IEEE International Workshops
on, pages 172–177. IEEE, 2005.

[84] Mark Allman, Paul Barford, Balachander Krishna-
murthy, and Jia Wang. Tracking the role of adversaries
in measuring unwanted traffic. SRUTI, 6:6–6, 2006.

[85] Paul Barford and Mike Blodgett. Toward botnet meso-
cosms. HotBots, 7:6–6, 2007.

[86] Theophilus Benson and Balakrishnan Chandrasekaran.
Sounding the bell for improving internet (of things)
security. In Proceedings of the 2017 Workshop on
Internet of Things Security and Privacy, pages 77–82.
ACM, 2017.

[87] Mobin Javed and Vern Paxson. Detecting stealthy, dis-
tributed ssh brute-forcing. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, pages 85–96. ACM, 2013.

[88] Hyang-Ah Kim and Brad Karp. Autograph: Toward
automated, distributed worm signature detection. In
USENIX security symposium, volume 286. San Diego,
CA, 2004.

[89] Ayesha Binte Ashfaq, Maria Joseph Robert, Asma
Mumtaz, Muhammad Qasim Ali, Ali Sajjad, and
Syed Ali Khayam. A comparative evaluation of
anomaly detectors under portscan attacks. In Inter-
national Workshop on Recent Advances in Intrusion
Detection, pages 351–371. Springer, 2008.

[90] M Zubair Shafiq, Syed Ali Khayam, and Muddassar
Farooq. Improving accuracy of immune-inspired mal-
ware detectors by using intelligent features. In Pro-
ceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 119–126. ACM,
2008.

[91] Ayesha Binte Ashfaq, Zainab Abaid, Maliha Ismail,
Muhammad Umar Aslam, Affan A Syed, and Syed Ali
Khayam. Diagnosing bot infections using bayesian
inference. Journal of Computer Virology and Hacking
Techniques, 14(1):21–38, 2018.

[92] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong,
Matthew Caesar, and Nikita Borisov. Botgrep: Finding
p2p bots with structured graph analysis. In USENIX
Security Symposium, volume 10, pages 95–110, 2010.

[93] José Jair Santanna, Ricardo de O Schmidt, Daphne
Tuncer, Joey de Vries, Lisandro Z Granville, and Aiko
Pras. Booter blacklist: Unveiling ddos-for-hire web-
sites. In Network and Service Management (CNSM),
2016 12th International Conference on, pages 144–
152. IEEE, 2016.

[94] Pavlos Lamprakis, Ruggiero Dargenio, David Gugel-
mann, Vincent Lenders, Markus Happe, and Laurent
Vanbever. Unsupervised detection of apt c&c channels
using web request graphs. In International Conference
on Detection of Intrusions and Malware, and Vulnera-
bility Assessment, pages 366–387. Springer, 2017.

[95] Hongyu Gao, Jun Hu, Christo Wilson, Zhichun Li, Yan
Chen, and Ben Y Zhao. Detecting and characterizing
social spam campaigns. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement,
pages 35–47. ACM, 2010.

[96] Vincentius Martin, Qiang Cao, and Theophilus Benson.
Fending off iot-hunting attacks at home networks. In
Proceedings of the 2nd Workshop on Cloud-Assisted
Networking, pages 67–72. ACM, 2017.

[97] Zesheng Chen, Chuanyi Ji, and Paul Barford. Spatial-
temporal characteristics of internet malicious sources.

In INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, pages 2306–2314. Citeseer,
2008.

[98] Sakil Barbhuiya, Zafeirios Papazachos, Peter Kil-
patrick, and Dimitrios S Nikolopoulos. Rads: Real-
time anomaly detection system for cloud data centres.
arXiv preprint arXiv:1811.04481, 2018.

[99] Monowar H Bhuyan, Dhruba Kumar Bhattacharyya,
and Jugal K Kalita. Network anomaly detection: meth-
ods, systems and tools. Ieee communications surveys
& tutorials, 16(1):303–336, 2014.

[100] Vinod Yegneswaran, Jonathon T Giffin, Paul Barford,
and Somesh Jha. An architecture for generating seman-
tic aware signatures. In USENIX Security Symposium,
pages 97–112, 2005.

[101] Justine Sherry, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Blindbox: Deep packet inspection
over encrypted traffic. ACM SIGCOMM Computer
Communication Review, 45(4):213–226, 2015.

[102] Vyas Sekar, Yinglian Xie, David Maltz, Michael Re-
iter, and Hui Zhang. Toward a framework for internet
forensic analysis. In ACM HotNets-III, 2004.

[103] George Nychis, Vyas Sekar, David G Andersen, Hy-
ong Kim, and Hui Zhang. An empirical evaluation of
entropy-based traffic anomaly detection. In Proceed-
ings of the 8th ACM SIGCOMM conference on Internet
measurement, pages 151–156. ACM, 2008.

[104] Mobin Javed, Ayesha Binte Ashfaq, M Zubair Shafiq,
and Syed Ali Khayam. On the inefficient use of en-
tropy for anomaly detection. In RAID, pages 369–370.
Springer, 2009.

[105] Rick Hofstede, Luuk Hendriks, Anna Sperotto, and
Aiko Pras. Ssh compromise detection using net-
flow/ipfix. ACM SIGCOMM Computer Communica-
tion Review, 44(5):20–26, 2014.

[106] Clemens Kolbitsch, Paolo Milani Comparetti, Christo-
pher Kruegel, Engin Kirda, Xiao-yong Zhou, and Xi-
aoFeng Wang. Effective and efficient malware detec-
tion at the end host. In USENIX security symposium,
volume 4, pages 351–366, 2009.

[107] Thomas Blasing, Leonid Batyuk, Aubrey-Derrick
Schmidt, Seyit Ahmet Camtepe, and Sahin Albayrak.
An android application sandbox system for suspicious
software detection. In 2010 5th International Con-
ference on Malicious and Unwanted Software (MAL-
WARE 2010), pages 55–62. IEEE, 2010.

[108] Jaime Devesa, Igor Santos, Xabier Cantero, Yoseba K
Penya, and Pablo García Bringas. Automatic
behaviour-based analysis and classification system for
malware detection. ICEIS (2), 2:395–399, 2010.

[109] Mainack Mondal, Bimal Viswanath, Allen Clement,
Peter Druschel, Krishna P Gummadi, Alan Mislove,
and Ansley Post. Defending against large-scale crawls
in online social networks. In Proceedings of the 8th
international conference on Emerging networking ex-
periments and technologies, pages 325–336. ACM,
2012.

[110] Facebook to contact 87 million users affected by data
breach. https://www.theguardian.com/
/technology//2018//apr//08/
/facebook-to-contact-the-87-
million-users-affected-by-data-
breach.

[111] Bimal Viswanath, Muhammad Ahmad Bashir, Mark
Crovella, Saikat Guha, Krishna P Gummadi, Balachan-
der Krishnamurthy, and Alan Mislove. Towards detect-
ing anomalous user behavior in online social networks.
In USENIX Security Symposium, pages 223–238, 2014.

[112] Stefan Frei, Thomas Duebendorfer, and Bernhard Plat-
tner. Firefox (in) security update dynamics exposed.
ACM SIGCOMM Computer Communication Review,
39(1):16–22, 2008.

[113] Grant Ho, Aashish Sharma Mobin Javed, Vern Paxson,
and David Wagner. Detecting credential spearphish-
ing attacks in enterprise settings. In Proceedings of
the 26rd USENIX Security Symposium (USENIX Secu-
rity?17), pages 469–485, 2017.

[114] http://heartbleed.com/.

A Using PrivateEye
PrivateEye is designed as a preliminary detector and its detec-
tions should be followed up with more expensive techniques
(e.g., [15]). These techniques are computationally expensive
and require customer permission. PrivateEye’s role is to re-
duce the number of VMs that need to be investigated and to
protect all VMs at all times with low overhead.

Sometimes, obtaining customer permissions takes too long
e.g., if a new vulnerability is discovered that could be ex-
ploited by compromised machines (e.g., Heartbleed [114])
the provider may not have time to obtain permission. The op-
erator may choose to move suspect VMs to a sandbox4 until
the appropriate patch is applied to all VMs and devices. If
obtaining customer permission in time is not possible, Priva-
teEye can be used to decide whether a VM should be moved
or not. But what are the implications of using PrivateEye as
the only compromise detection system in the DC?

% of all compromised VMs

Si
ze

 o
f s

an
db

ox
(%

 o
f D

C
)

Size of sandbox (% of DC)

%
 o

f s
an

db
ox

fil
le

d
w

ith
 c

om
pr

om
is

ed
 V

M
s

(a) (b)

0 50 100
0

50

100

0 50 100
0

50

100

Figure 20: (a) Fraction of the sandbox occupied by com-
promised VMs. (b) Sandbox size needed to isolate x% of
compromised VMs.

For a sandbox size k the operator needs to decide which
VMs to put in the sandbox. Using PrivateEye’s scores, one
choice is to move the top k most suspicious VMs. Figure 20-a
illustrates what fraction of the sandbox would be occupied
by compromised VMs for different values of k. As the sand-
box size increases the utility of the sandbox diminishes–an
increasing number of legitimate VMs end up in the sandbox.
The choice of k is a tradeoff between the number of VMs
that need to be migrated and the number of compromised
VMs captured. Figure 20-b examines this tradeoff in our
dataset. The operator needs to consider the combination of
these graphs when choosing an appropriate k. The larger the
sandbox, the more effective it is in reducing the number of
compromised VMs outside the sandbox. However, larger k
means that it is more likely to place legitimate VMs in the
sandbox impacting their performance. To avoid penalizing
legitimate VMs, the operator can choose not to migrate a VM
if its score is below a threshold. Finding the optimal threshold
depends on the operator’s needs.

4A sandbox could be a host that only runs suspect VMs (limit damage of
side-channels) or where more stringent ACLs are imposed.

