
SpySaver: Using Incentives to Address Spyware

Stefan Saroiu† and Alec Wolman‡

†University of Toronto and ‡Microsoft Research

ABSTRACT

Despite the many solutions proposed by industry and the research
community to address spyware, this problem continues to grow.
Many of today’s anti-spyware approaches are inspired by techniques
used against related security problems, such as worms, DoS at-
tacks, computer viruses, and spam. Although these techniques have
been retrofitted to address spyware, they remain ineffective because
they rely on the compromised host to detect and remove spyware.
Once a host is compromised, attackers often find simple ways to
escape spyware detection and removal.

This paper presents SpySaver – a novel anti-spyware approach
that reduces the incentive to deploy spyware. Our approach does
not prevent spyware installations, nor does it recover from them.
Instead, SpySaver decreases the value of the information spyware
collects by creating counterfeit information. Our goal is to generate
enough counterfeit information to devalue the information gathered
by spyware to the point that we eliminate the incentive to collect it
in the first place. In this paper, we present our approach and an ini-
tial design of a tool that produces realistic counterfeit information
about the browsing patterns of Web users.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Invasive soft-

ware

General Terms

Economics, Security

Keywords

Spyware

1. INTRODUCTION
Today’s anti-spyware tools have done little to stop the prolifera-

tion of spyware programs. Relying on an already infected host to
detect and remove spyware programs has proven challenging. For
example, attackers can easily adapt to anti-spyware tools that use
signature-based techniques to discover and identify spyware pro-
grams. Recently, spyware programs themselves have started to use
signatures to detect the presence of anti-spyware tools to disable
and remove them from the infected machine. Recognizing the dif-
ficulties inherent in leveraging already compromised machines to
defend against spyware, several research projects have started to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetEcon’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-179-8/08/08 ...$5.00.

propose systems that use special hardware (e.g., a graphics card) or
virtual machines to protect sensitive data on commodity systems [3,
4]. While these systems make great strides towards protecting users
from spyware, they have yet to be deployed at large-scale. Their
lack of success is primarily due to the drastic changes they require
in the usability or programmability of today’s commodity systems.

Despite the many anti-spyware solutions, the spyware problem
has continued to gain momentum. Recent findings suggest that mil-
lions of Internet hosts are infected with spyware programs [6, 19].
This large number of spyware infections is caused by two main
factors. First, most Internet users remain unaware of the common
mechanisms used by spyware to propagate, as well as the security
and privacy implications of becoming infected by spyware. One
study has found over 70% of those users infected with Claria or
WhenU are unaware that spyware programs are running on their
desktops [18]. Second, spyware writers have a direct financial in-
centive to find creative ways of infecting as many Internet hosts as
possible. This is because the information collected by spyware pro-
grams has financial value. This information is important to Internet
vendors and advertisers – they use it to build profiles of Internet be-
havior at large or to display targeted advertisements (e.g., browser
pop-ups) to users. As spyware infects larger Internet user popula-
tions, the spyware programs become more effective: the gathered
profiles become more accurate and more valuable, and the targeted
advertising reaches larger user bases.

Spyware poses many risks to end users. Because these programs
run surreptitiously and gather information without the explicit con-
sent of users, spyware compromises these users’ privacy. Spyware
is also having a significant effect on reliability: a report by the Fed-
eral Trade Commission (FTC) mentions that spyware programs are
responsible for as much as fifty-percent of all Windows crashes re-
ported to Microsoft [10]. There are reports that spyware degrades
the infected hosts’ performance [20]. Spyware may also appropri-
ate resources of the computer that it infects [21] or alter the func-
tionality of applications [17]. Finally, an earlier study has found
evidence that spyware programs pose security vulnerabilities [19].

In this paper, we use an idea inspired by economics to address
the proliferation of spyware programs: creating counterfeit infor-
mation. This technique does not prevent spyware installations, nor
does it recover from them; instead, it focuses on decreasing the
value of the information spyware collects. Information about the
behavior of real users has value to the vendors that produce spy-
ware, yet mixing in counterfeit information can significantly de-
value the aggregate information collected by the spyware. This ap-
proach must satisfy two conditions in order to be successful. First,
we must generate enough counterfeit information to devalue the ag-
gregate information to the point that we eliminate the incentive to
collect it in the first place. Second, we must make the counterfeit
information sufficiently similar to the legitimate information that
separating them is too expensive. Ours is not the first attempt to
use an economic approach to address a security problem: [5, 14]
investigate using economics to address the spam problem.

Our approach has two key advantages. The first advantage lies
in its generality; we do not have to understand the behavior of in-

dividual spyware programs to be effective in combating them; in
contrast, signature-based approaches need to continuously update
their signature lists. Second, our approach need not be perfect to be
successful. Ultimately, SpySaver’s goal is to convince the spyware
writers that there are easier ways to advertise on the Internet or to
collect valuable information than through spyware programs. One
weakness of our approach is that we do not address all types of ma-
licious programs that could infect users’ machines. In particular,
malware programs such as keystroke loggers are not significantly
harmed by SpySaver, as long as the information such programs col-
lect can be validated independently.

We present an initial design of SpySaver, a program that uses a
computer’s idle time to create counterfeit information. The goal of
SpySaver is to create the illusion of many fake users browsing the
Web in addition to the real user, and to cause spyware programs
to gather the forged information. Our tool runs in the background,
similar to a screen saver, and it stops the fake browsing when the
real user is active.

SpySaver uses a virtual machine architecture to isolate each user,
both fake ones and real ones. In this way, the browsing experience
for real users is largely unaffected by the existence of the fake users.
SpySaver uses pre-recorded browsing sessions to drive the behavior
of each fake browser; a browsing session is basically a transcript of
all Web activity required to emulate a real user’s Web surfing activ-
ity. For each fake user, SpySaver downloads profiles for browsing
sessions from a centralized repository. Whenever a fake browser
replays a browsing session, the HTTP requests are intercepted and
answered by a local proxy cache to ensure that the fake browsing
sessions do not generate a significant amount of additional network
traffic. If the intercepted HTTP request cannot be matched with a
pre-loaded response, the proxy cache forwards this request to the
actual Web origin server. The proxy serves two roles: (1) to cre-
ate the illusion that the fake Web users browse successfully even
when using forged information and credentials; and (2) to reduce
the amount of Web traffic generated by our tool. All of our tool’s
components run outside the virtual machine boundaries isolating
users. In this way, the spyware cannot look for our tool’s presence
within their virtual machine boundaries.

2. UNDERSTANDING SPYWARE
In this section, we start by describing how desktop machines be-

come infected with spyware, the kinds of information that spyware
programs gather, and the ways this information is used. Our de-
scription of spyware is brief; for more details see [10]. SpySaver is
only targeted to address the classes of spyware described below –
it is not a general solution for all malicious programs.

Upon installation, spyware programs typically perform one of
the following tasks: gathering information about the user’s brows-
ing habits; and delivering targeted advertisements to users (e.g.,
browser pop-ups.) The gathered information may include lists of
previously visited URLs, the user’s age, gender, zipcode, country,
and e-mail address [1, 2]. Some spyware programs gather more
specific information, such as the machine’s MAC address or the
names of the CDs being played [15]. There are reported cases
where the collected information is transmitted in plaintext over the
Internet, increasing the possibility of exposing it to even more for-
eign parties [2, 7]. The gathered information can be used to build
repositories of information on how users browse the Web (e.g. 20%
of users who visit site A will also visit site B). This information is
valuable to Internet vendors, advertisers, or even malicious parties.
For example, advertisers can mine this data to measure the effec-
tiveness of their advertisements; similarly, Internet vendors can use
it to extract valid e-mail addresses for targeted advertising [26].

Another class of spyware programs, often referred to as adware,
displays pop-up advertisements on the user’s screen. Some adware
performs contextual advertising [11], creating pop-ups that are rel-
evant to the user’s browsing context. For example, a spyware pro-
gram can detect when a user is browsing an e-commerce website
and decide to pop-up a competitor’s advertisement, or it can detect
the existence of a keyword in the currently displayed web page and
pop-up an advertisement related to that word. Contextual advertis-
ing is attractive to Internet vendors because it offers the possibility
of increasing ad relevance. Spyware companies enter into agree-
ments with these vendors to distribute and display their ads, and
the spyware programs provide tracking mechanisms to collect the
number of times that users click on the displayed ads. These track-
ing counters are essential to the business model of spyware vendors
– they quantify the spyware program’s effectiveness and the value
of the services provided to Internet vendors. There is already evi-
dence that inflated tracing counters are a major cause of concern for
Internet advertisers [27]. It has been recently reported that several
pop-up spyware programs inflate their click-counters in an attempt
to overcharge their advertisers [9].

In summary, spyware gathers information because it has value.
In some cases, this information is used to create repositories that re-
flect how users browse the Web. In other cases, this information is
used to charge Internet advertisers and vendors for the services that
spyware provides. In either case, mixing counterfeit browsing in-
formation with the browsing information from real users decreases
the value of the information spyware collects.

3. THE PROBLEMS WITH CURRENT

ANTI-SPYWARE APPROACHES
Although spyware is a relatively recent phenomenon, the in-

dustry, the government, and the research community have already
started to investigate solutions to the spyware threat. Most solu-
tions borrow from techniques used to address related security prob-
lems, such as Internet worms, denial-of-service attacks, computer
viruses, and spam.

3.1 Anti-Spyware Tools
As the spyware threat has been gaining momentum, a cottage

industry of anti-spyware tools have started to emerge. Most tools
use a signature-based approach to detect and remove spyware from
a local host: they scan the local file-system searching for known
spyware signatures. The effectiveness of this approach is deter-
mined by how complete and up-to-date the lists of the signatures
of spyware programs are. Generating signatures of spyware pro-
grams is difficult for three reasons. First, these signatures must be
able to distinguish between legitimate programs and spyware. Sec-
ond, widespread deployment of the signature scanning approach
will lead the spyware developers to make their programs polymor-
phic, thus making them harder to detect. Third, maintaining com-
plete and up-to-date signature lists requires constant maintenance,
which increases the costs of the scanning tools.

Another research project [25] takes a different approach: they
monitor a set of known locations (“auto-start extensibility points”)
within the system, and detect when new programs are added to
these auto-start locations. This approach makes it more difficult
for spyware to hide itself during the installation process.

3.2 Reverse Firewalls
Both industry [28] and the research community [22] have started

to investigate reverse firewalls. Unlike regular firewalls, reverse
firewalls prevent the local machine from initiating network connec-
tions to unknown or unauthorized locations. These solutions make

it harder for spyware to “silently” relay the collected information
back to their servers. The primary challenge for these approaches
is to distinguish between legitimate and malicious programs, be-
cause some legitimate programs, such as peer-to-peer applications,
do initiate connections to unknown network locations.

3.3 Protecting Sensitive User Data
Another project [3] has started to investigate ways to hide (e.g.

encrypt) the information that spyware collects. The basic premise
of this approach is to confine the trusted computing base (TCB) to
a limited set of components that have access to users’ data, and to
restrict spyware from infecting this TCB. In [3], the authors use
the graphics card as the only trusted component on clients for a
limited set of applications, such as a video player application. The
graphics card performs encryption and decryption services so that
sensitive data is never stored in main memory on the client, and is
never exposed to the client operating system.

The key difficulty of this approach is structuring applications
so that they can function correctly without access to the plain-
text version of the sensitive data. This difficulty prevents this ap-
proach from being applicable to complex applications, such as Web
browsers. For example, Web browsers often use Javascript to vali-
date input on Web forms, before the data entered is sent to the Web
server. It is likely impossible for a browser to validate an encrypted
versions of the user’s input.

3.4 Legislative Approaches
A different approach to addressing the spyware threat is to adopt

legislative measures against the creation and distribution of spy-
ware programs [13, 8]. These solutions are similar in nature to the
anti-spam legislation currently adopted. We believe that legislative
solutions will have limited effectiveness for three reasons. First,
spyware is hard to define in practice. A program that is legitimate
to one user may be considered a spyware program by another user.
For example, the Google toolbar records the list of visited Web sites
out of list of websites contained in a Google query’s result. This in-
formation cannot be collected by the Google search servers; it can
only be gathered from the users’ desktops. While Google’s privacy
policy stipulates that they never share non-aggregate user informa-
tion with third parties, they reserve the right to share records of
users’ browsing habits [12]. While some users find the Google tool-
bar’s behavior acceptable [23], some identify it as spyware [16].
Second, the techniques used by spyware to infect machines are con-
tinuously evolving and being refined. Over time, legislation that
precludes certain kinds of activities is likely to be circumvented
through innovation. Third, the Internet is an international network;
it is hard to enforce legislation across a large number of countries
with different judicial and law enforcement systems.

4. OUR APPROACH: USING INCENTIVES
Our approach is to create synthetic Web browsing sessions that

imitate the behavior of real Web users, and to let spyware programs
gather this forged information. By creating these forged Web ses-
sions, our intent is to taint the information that spyware collects and
to artificially inflate the tracking counters for contextual advertising
spyware. We use a proxy cache to filter out most of the additional
workload we create before it reaches the origin servers, so that we
primarily affect spyware running on client machines – our intent is
not to break the existing business model for Web advertisements.
However, we are careful not to filter at the proxy the additional
click-through traffic we generate for tracking-counter inflation.

Tainting information decreases the value of the aggregate infor-
mation repositories collected by the spyware vendors that charac-

terize how users browse the Web. Mining information from these
tainted repositories may lead to drawing false conclusions about
Web users’ behavior. A list of e-mail addresses extracted from a
tainted repository may have little value if a large fraction of them
are counterfeit. Similarly, inflating tracking counters is also detri-
mental to the spyware vendors’ business model because these in-
flated counters misrepresent the success of the spyware program at
delivering pop-up ads to real users. With inaccurate tracking coun-
ters, it is hard to measure how many real users actually click on an
advertisement. This makes it difficult for the spyware companies
to measure their effectiveness and to charge for their services.

In order to imitate users browsing the Web, one simple technique
we considered involved creating additional browsing actions with
the user’s browser while that user is away. The primary drawback
of this technique is that it interferes with Web experience of the real
user, because it alters the user’s browser state. For example, Web
cookies could contain information relevant to the counterfeit ac-
tions rather than the real actions. When pressing the “Back” button
or accessing the “History” menu, the real user might be redirected
to a Web page never encountered before.

SpySaver uses a different technique: it creates new synthetic
Web users and generates Web browsing actions within the environ-
ments of these additional Web users. The browsers of the forged
users are deliberately infected with spyware programs, causing the
spyware to collect forged information. The forged users also gener-
ate clicks on pop-up advertisements and browse the Web in a man-
ner similar to the real users. The forged users identities are also
counterfeit: they use forged e-mail addresses and login credentials.
One drawback of this technique in comparison with the previous
one is that detecting an individual browsing stream being gener-
ated by SpySaver may be an easier problem to solve than detecting
SpySaver requests blended in with a real user’s browsing stream.
However, we view minimal impact on the user experience as our
primary design goal, and therefore we constrain our solution to only
generating requests from entirely separate user environments.

To avoid interfering with the browsing experience of real users,
we need an mechanism to isolate the forged web users from each
other and from the real user. Isolation is needed primarily to contain
the spyware programs that we deliberately introduce into the forged
users environments, but also to prevent any other state changes
from affecting real users (e.g. a fake user visits a web page which
installs an ActiveX control). Once a spyware program infects one
domain, it can then only monitor the user within that domain. The
isolation mechanism also makes it harder for spyware programs to
directly test for our tool’s presence. All of our tool’s components
run outside the perimeters isolating each Web user (both real and
forged.) Our current choice for isolation is to use virtual machines;
we discuss more details of our design in Section 4.

To deliberately infect the environments of the forged users with
spyware, SpySaver performs periodic but infrequent snapshots of
real user environments. These snapshots are then copied into the
environments of the forged users. This ensures that the spyware
programs that are affecting real users are the same programs whose
information SpySaver is devaluing.

SpySaver periodically downloads information from a central repos-
itory on how to generate workloads for synthetic Web users, and
activates Web browsing sessions for the forged users when it de-
tects that the machine is idle. SpySaver is reminiscent of systems
like SETI@home: users running SpySaver are virtually donating
their machines’ idle time to address the proliferation of spyware.

Our overall approach has several attractive properties. First, it
is easily deployable: users can individually run this tool on their
hosts. Second, by using the hosts’ idle time, it creates minimal in-

convenience to users. Third, by using virtual machines to provide
isolation, it does not interfere with the way in which Web users
browse today. We believe that the main limitation of our approach
is that its effectiveness depends upon widespread deployment. It is
likely that the early adopters of SpySaver will not see a direct ben-
efit. However, each single adopter forges tens of fake Web users,
so even a modest deployment should generate a significant amount
of counterfeit information.

5. SPYSAVER: USING COMPUTER IDLE

TIME TO FORGE WEB USERS
In this section, we present an initial design of SpySaver, a tool

that exploits idle periods on desktop computers to generate Web
browsing sessions by forged Web users. The goal of SpySaver is
to create the illusion of multiple users browsing the Web in such
a way that the spyware programs cannot distinguish between real
users and forged users, and to let spyware programs gather infor-
mation about all the users (both real and forged). SpySaver runs
in the background, similar to a screensaver, and it halts all the fake
browsing activities whenever a real user is active. SpySaver con-
sists of a controller, a centralized repository of Web browsing in-
formation, and a proxy cache. These additional components are
placed outside the perimeters isolating each Web user. In this way,
the spyware programs cannot directly look for our tool’s presence
within their isolation boundaries. In this section, we start by defin-
ing the goals of our tool, and then we describe each component of
SpySaver in turn.

5.1 Our Goals
To be effective, a tool that creates counterfeit Web browsing in-

formation must meet three design criteria:
1. It must be hard to disambiguate the real users from the coun-

terfeit users. We believe that no solution can guarantee that the real
information cannot be separated from the counterfeit information:
one can develop ever more sophisticated algorithms that attempt to
“scrub” the gathered information. Instead, our goal is simply to
raise the bar: we want to make the cost of scrubbing the gathered
information more expensive than the value of the information itself.

2. The tool’s presence must be transparent to the real user. We
believe that the success of a solution rests on its ability to not inter-
fere with the user’s experience when browsing the Web. In particu-
lar, we reject any design alternative that leads to changing the way
users browse the Internet today.

3. As a consequence of the previous criterion, our solution’s per-
formance requirements must be minimal. To be successful, our tool
must use lightweight techniques that conserve the host’s resources,
including CPU, RAM, disk storage, and network bandwidth.

5.2 Our Non-Goals
It is also important to emphasize what a tool creating counter-

feit information will not do. Our tool does not attempt to protect
information about real users from the spyware programs. For ex-
ample, when a user does an online purchase, the spyware programs
may still gather personal or sensitive data, such as email addresses
and credit cart numbers. The goal of our tool is not to prevent spy-
ware from collecting personal data, but rather to forge a significant
fraction of the information it gathers.

5.3 The Controller
SpySaver uses virtual machines to provide isolation between user

environments. Virtual machines provide the illusion of running
multiple independent local hosts, each with its own hardware re-

Wed Mar 26 08:00:00 2008 GMT: User: type URL: www.google.com

Wed Mar 26 08:00:02 2008 GMT: User:Type in search box: “Mortgage”

Wed Mar 26 08:00:03 2008 GMT: User: Click Submit button

Wed Mar 26 08:00:04 2008 GMT: Browser: Issue HTTP GET request

Wed Mar 26 08:00:05 2008 GMT: Browser: Received HTTP 200 response

Figure 1: A sample browsing session. A browsing session con-

tains the information required for SpySaver to emulate a user

accessing a specific set of Web pages.

sources. This property aligns well with our second design require-
ment: making SpySaver transparent to the user. A real user just
sees a normal operating system installation with a standard web
browser. Any activity by forged users in other VMs will not affect
the real user’s browsing experience: all the browser state (including
the browser cache, the history list, the user’s cookies, plugins and
ActiveX controls, etc...) remains unchanged.

We implement the SpySaver controller within the virtual ma-
chine monitor (VMM). The controller detects when the computer
is idle and decides when to start and stop the different VMs to sim-
ulate the presence of additional Web users. Each user, including
the real one, browses within a single VM. Each spyware program
can only gather information specific to its own VM. This will make
it harder for a spyware program to determine whether the user be-
ing monitored is fake or real. We deliberately attempt to infect the
fake VMs with spyware programs, because otherwise it is unlikely
that fake VMs would contain spyware. Our initial approach to in-
fect VMs with spyware is to have the VMs download and run a
large number of free software programs initially. Previous work
has shown that many popular, free software programs contain mul-
tiple spyware instances [19]. In addition, we plan to periodically
snapshot real user environments and copy them into the forged user
environments, so that over time the spyware in the fake VMs will
match the spyware that affects real users.

5.4 The Centralized Profile Repository
To generate a workload for the Web browsers running inside

the fake VMs, the SpySaver controller replays pre-recorded Web
browsing sessions. A browsing session contains enough informa-
tion to emulate a user browsing a specific set of Web pages. Exam-
ples of browsing sessions are: issuing a query to a search engine
and traversing the results of that query, browsing a news site, or
reading and sending Web-based e-mail. A browsing session in-
cludes the user actions (e.g., clicking on HTML links, filling out
forms, clicking on buttons, etc.) together with the browser’s HTTP
requests and responses. Figure 1 illustrates a browsing session de-
scribing a user issuing a query to a search engine.

For each fake Web user, the SpySaver controller periodically
downloads browsing profiles from a centralized repository. These
profiles are used to generate browsing sessions, which are replayed
according to the timestamps of their actions. The role of times-
tamps is to ensure that the timing of actions generated by the SpySaver
controller appear realistic, and therefore are difficult to distinguish
from actions generated by real users.

We are currently investigating two approaches for creating brows-
ing profiles: 1) volunteer Web users running instrumented Web
browsers; and 2) network traces of real Web users’ traffic. The
advantage of the first approach is the ease of collecting informa-
tion about a user’s actions, whereas the latter approach provides
the benefit of easier deployment for a large set of users. From net-
work traces, we extract the URLs visited by each user along with
each accesses timestamp. For each URL, we determine whether the
user requested it by manually entering it, or by clicking on a link

or a button. We decide that a URL was entered by clicking a link
or button when that link was present in the content of a previous
HTTP reply; otherwise we decide that the URL was manually en-
tered. We use this distinction to delineate browsing sessions: each
manually entered URL defines the start of a new browsing session.

5.5 The Proxy Cache
When the controller plays a browsing session, the corresponding

HTTP requests are intercepted and served from the SpySaver proxy
cache. The role of the proxy cache is to serve Web content only to
those virtual machines driven by the SpySaver controller, and not
to the VM serving the real user. Intercepting the requests gener-
ated by the controller is important because this allows the browsing
sessions to contain realistic user behavior such as purchasing an
item from a Web storefront, or accesses to a Web-based email site.
Another benefit of the proxy cache is that it reduces the amount
of extra Web traffic generated by our tool, alleviating any potential
pressures from ISPs against a wide SpySaver deployment.

Before the SpySaver controller starts to replay a particular brows-
ing session, the proxy cache is pre-loaded with all the Web con-
tent needed to replay that session. Whenever a browser driven by
SpySaver issues an HTTP request, the proxy intercepts it and an-
swers it with the corresponding HTTP response pre-loaded from
the browsing session. If the intercepted HTTP request cannot be
matched with a pre-loaded response, the SpySaver proxy cache for-
wards this request to the actual Web origin server.

There are two reasons why fake VM’s may issue HTTP requests
other than those that exactly match the browsing session. First, dif-
ferences in browser configuration may cause minor variations in the
HTTP headers when the browser is replaying a browsing session.
In this case, the browser’s HTTP requests should be sufficiently
similar to be matched. Second, many spyware programs send the
information they gather to the spyware servers using HTTP. These
requests should not match any of the requests in the browsing ses-
sion, and therefore SpySaver will not interfere with spyware com-
municating the forged information.

The proxy cache runs in a trusted environment and it commu-
nicates with the controller to determine which VMs are legitimate
and which are fake. While proxy caches traditionally run on dedi-
cated hardware, we envision the SpySaver proxy cache running in
an additional trusted virtual machine. Figure 2 depicts our current
architecture. In this figure, we illustrate the SpySaver proxy cache
separate from the browsing virtual machines.

6. RESEARCH CHALLENGES
In this section, we outline some of the remaining challenges and

our current thoughts on how to address them.
One issue is our claim that SpySaver eliminates the incentive for

spyware companies to collect information. If the counterfeit traf-
fic is similar to the legitimate traffic, then perhaps the aggregate
information still provides monetary value to the spyware compa-
nies, even if they cannot say for certain whether the information
about a specific user is real. There are two reasons why we be-
lieve this will not be a problem. First, we can deliberately skew the
high-level properties of the aggregate workload that we generate,
as long as we do it in an unpredictable manner. Second, much of
the value in collecting information about a user’s surfing habits lies
in the specifics. Examples include correlating activity across sites
(i.e. to be able to say that 60% of the users who access site A also
access site B) and characterizing users’ activities at a specific site
(e.g. a sporting goods vendor would like to know which sporting
news sites its customers spent the most time browsing in order to
better spend its advertising dollars). With widespread deployment

T
ru

s
te

d

Hardware

Controller

OS 1

Browser

1

OS 2

Browser

2

OS n

Browser

n

Proxy

Spyware Spyware Spyware

Trust

Boundary

U
n

tr
u

s
te

d

Browsing

Sessions

Repository

Virtual Machine Monitor

Internet

S
in

g
le

 h
o

s
t

Single host

Figure 2: The SpySaver Architecture: SpySaver creates the illu-

sion of multiple users browsing the Web. SpySaver runs in the

background, similar to a screensaver, and it stops the fake brows-

ing activity whenever the real user is active. A controller drives

multiple browsers according to browsing sessions downloaded

from a centralized repository. When a browsing session is re-

played, the browser’s HTTP requests corresponding to the brows-

ing session’s actions are intercepted and served from a proxy

cache. Spyware programs are isolated within virtual machines

without knowing whether the machine is fake or real.

of SpySaver the spyware companies would not be able to answer
such questions.

In Section 3, we described how SpySaver addresses adware by
inflating the tracking counters that the spyware companies use to
charge for their services. To counterattack, the spyware companies
could attempt to measure the inflation created by SpySaver and dis-
count their per-ad-price accordingly. In practice, discounting will
be difficult because (1) it is hard to measure the inflation factor
when you cannot distinguish between real and fake users; and (2)
the controller will vary the click-through rate in an unpredictable
manner, thus increasing the difficulty of setting a discount price.

Our proxy filters out most HTTP accesses to URLs generated
by the SpySaver controller, yet it allows all other HTTP accesses
to bypass the proxy. Therefore, we must prevent spyware from
exploiting this filtration mechanism to detect whether it is running
in a fake VM or a real VM.

Although the purpose of our proxy is to vastly reduce the amount
of additional network traffic generated by fake users, there is one
additional source of network traffic generated by SpySaver that the
proxy does not help with. SpySaver must periodically download
new browsing profiles used to generate synthetic Web users. To
address this concern, we are investigating techniques to represent
the profiles in a compact manner.

The controller needs to carefully manage the policy that decides
which of the fake VMs it should activate when the machine be-
comes idle. We need to protect against timing analysis attacks that
deduce which VM is real based on the times when it is active. The
controller will record the active times distribution for the real user,
and deliberately generate similar distributions for its fake users.

To maintain credibility, fake users must perform an array of Web
actions, including online purchases and other transactions requir-
ing authentication. Because these Web transactions are encrypted
in an end-to-end fashion over SSL, our proxy cache cannot inter-
cept them. Similarly, because our fake users are using forged cre-
dentials, the proxy cache cannot forward encrypted fake requests to
an origin server. One solution to this problem is to use previously

proposed proxy certificates [24]. Another solution is to move the
SSL functionality outside all VMs, both the fake ones and the real
one. In this way, all traffic leaving the VMs remains unencrypted.
The proxy cache will use SSL to encrypt all legitimate traffic that
is confidential.

Spyware developers may attempt to fight back against SpySaver
by installing it and attempting to generate signatures of the traffic
that SpySaver generates. There are a variety of techniques that the
central repository can adopt to make online identification of the
profiles challenging, such as varying the profiles that are given out
on a per-destination basis. Remember that the goal of SpySaver is
simply to raise the bar to convince the Spyware companies to find
less invasive ways of collecting information about browsing habits.

The final research challenge is how to quantify our tool’s effec-
tiveness. There are two open questions that our research must ad-
dress. First, how much counterfeit information is needed to elimi-
nate spyware? In other words, how widespread must the deploy-
ment of SpySaver become before the paying clients of the spy-
ware companies start to question the value of what they’re paying
for? Second, will the privacy benefits of our approach outweigh the
costs of creating the counterfeit information?

7. CONCLUSIONS
This paper uses an idea inspired from economics to address the

proliferation of spyware: devaluing the information spyware col-
lects by creating counterfeit information. While information about
real users is valuable to the spyware companies, counterfeit infor-
mation is not. This approach’s key advantage lies in its generality;
to be effective, we do not have to understand the characteristics of
individual spyware programs.

8. REFERENCES

[1] CEXX.ORG. Adware, Spyware, and other unwanted
"malware" – and how to remove them, February 2005.
http://www.cexx.org/adware.htm.

[2] L. D. Cheveallier. Spyware and Network Security. SANS
Institute White Paper, August 2001.

[3] D. L. Cook, R. Baratto, and A. D. Keromytis. Remotely
Keyed CryptoGraphics - Secure Remote Display Access
Using (Mostly) Untrusted Hardware. Technical Report
CUCS-050-04, Columbia University, December 2004.

[4] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A
Safety-Oriented Platform for Web Applications. In
Proceedings of the 2006 IEEE Symposium on Security and

Privacy, Oakland, CA, May 2006.

[5] C. Dwork and M. Naor. Pricing via Processing or
Combatting Junk Mail. In Proceedings of the 12th Annual

International Cryptology Confernce, August 1992.

[6] Earthlink. Earthlink Spy Audit, June 2004.
http://www.earthlink.net/spyaudit/press/.

[7] B. Edelman. WhenU Violates Own Privacy Policy, July
2004. http://www.benedelman.org/spyware/
whenu-privacy/.

[8] B. Edelman. State Spyware Legislation, February 2005.
http://www.benedelman.org/spyware/

legislation/.

[9] B. Edelman. The Spyware – Click-Fraud Connection – and
Yahoo’s Role Revisited, April 2006. http:
//www.benedelman.org/news/040406-1.html.

[10] Federal Trade Commission. Monitoring Software on Your
PC: Spyware, Adware, and Other Software, April 2004.

http://www.ftc.gov/bcp/workshops/

spyware/transcript.pdf.

[11] Google. Contextual Advertising FAQ, February 2005.
https:

//adwords.google.com/select/ct_faq.html.

[12] Google. Google Privacy Center: Privacy Policy, February
2005. http://www.google.com/privacy.html.

[13] House of Representatives. SPY Act, February 2005.
http://thomas.loc.gov/cgi-bin/query/z?

c109:H.R.29:.

[14] T. Loder, M. W. V. Alstyne, and R. Wash. An Economic
Answer to Unsolicited Communication. In Proceedings of

the 5th ACM Conference on Electronic Commerce, May
2004.

[15] M. McCardle. How Spyware fits into Defense in Depth.
SANS Institute White Paper, January 2003.

[16] C. Metz. Is Google Invading Your Privacy?, February 2003.
http://www.pcmag.com/article2/0,4149,

904096,00.asp.

[17] S. Olsen. Software replaces banner ads on top sites. C|Net
News.Com article, August 2001.

[18] PCPitstop. Eight-Seven Percent of WhenU Users are Unware
They Are Using It, March 2004. http:
//www.pcpitstop.com/spycheck/whenu.asp.

[19] S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and
Analysis of Spyware in a University Environment. In
Proceedings of the 1st Symposium on Networked Systems

Design and Implementation (NSDI), San Francisco, CA,
March 2004.

[20] D. Saurino. Adware and Spyware: A Growing Privacy and
Security Problem. SANS Institute White Paper, August
2004.

[21] J. Schartz. “Acquitted man says virus put pornography on
computer”. New York Times article, August 2003.

[22] M. Shaw and S. D. Gribble. Reverse Firewalls in Denali. In
Work in Progress Presented at the 5th Symposium on

Operating Systems Design and Implementation (OSDI),
Boston, MA, December 2002.

[23] SpywareInfo. Is the Google Toolbar Spyware?, December
2002.
http://www.spywareinfo.com/newsletter/

archives/december-2002/12102002.php.

[24] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and
M. Thompson. RFC3820: Internet X.509 Public Key
Infrastructure (PKI) Proxy Certificate Profile, June 2004.

[25] Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson, M.-W.
Wu, Y. Huang, and S.-Y. Kuo. Gatekeeper: Monitoring
Auto-Start Extensibility Points (ASEPs) for Spyware
Management. In Proceedings of the 18th Large Installation

System Administration Conference (LISA), Atlanta, GA,
November 2004.

[26] WhenU.com. How WhenU Works, February 2005. http:
//www.whenu.com/how_whenu_works.html.

[27] Wired. How Click Fraud Could Swallow the Internet,
January 2006. http://www.wired.com/wired/
archive/14.01/fraud.html.

[28] Zone Labs. Zone Labs: Zone Labs, Internet security
products, online safety, software, protection., February 2005.
http://www.zonelabs.com.

