
Trusted Language Runtime (TLR): Enabling Trusted
Applications on Smartphones

Nuno Santos†, Himanshu Raj‡, Stefan Saroiu‡, and Alec Wolman‡

†MPI-SWS and ‡Microsoft Research

ABSTRACT
Despite their popularity, today’s smartphones do not yet
offer environments for building and running trusted appli-
cations. At the same time, current systems designed for
traditional desktop or server machines to enable trusted ap-
plications are either too heavyweight for smartphones or too
difficult to program. This paper presents the Trusted Lan-
guage Runtime (TLR), a system for developing and run-
ning trusted applications on a smartphone. The TLR is
lightweight because 1) it makes use of ARM TrustZone,
hardware support that offers rich trusted computing primi-
tives, and 2) it leverages the .NET MicroFramework, a lan-
guage runtime for embedded and resource-constrained de-
vices. The TLR is easy to program because .NET offers the
productivity benefits of modern high-level languages, such
as strong typing and garbage collection, to application de-
velopers.

1. INTRODUCTION
The need for trusted applications on smartphones is

greater than ever. As smartphones become the de facto
personal computing device, people are storing more and
more sensitive and personal information on their phones.
Unfortunately, the value of this information is starting to
make smartphones an attractive target for attacks, includ-
ing third-party applications with questionable practices [9]
as well as outright malware [11]. Even more alarming, re-
searchers have demonstrated the ease with which today’s
smartphones can be subjected to rootkits [6].

For desktop and server machines, researchers have devel-
oped systems that offer environments for running trusted
applications [10, 13, 12]. These systems aim to protect a
trusted application’s code and/or data by guaranteeing its
integrity (i.e., the trusted application cannot be modified by
malicious code) and confidentiality (i.e., the trusted applica-
tion can protect a secret from malicious code). To offer these
guarantees, such systems often use the hardware support for
trustworthy computing commonly found on x86 platforms,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile 2011, March 1–2, 2011, Phoenix, AZ, USA.
Copyright 2011 ACM 978-1-4503-0649-2 ...$10.00.

such as the Trusted Platform Module (TPM) and Intel’s
Trusted Execution Technology (TXT).

However, it is time to rethink the design of these trusted
runtime environments in the context of mobile devices. Cur-
rent approaches do not fit the needs of today’s mobile land-
scape for the following three reasons. First, the vast ma-
jority of mobile handhelds are ARM-based instead of x86-
based. There is no discrete TPM chip available on these
mobile platforms yet. However, ARM provides a hard-
ware solution for trustworthy computing known as the ARM
TrustZone [4]. ARM TrustZone provides a trusted execu-
tion environment on the CPU cores, with hardware support
for memory protection of the trusted environment, flexible
control over interrupt delivery to the trusted environment,
and the full power of the CPU for cryptographic operations.
This can lead to simpler and more powerful software with a
smaller trusted computing base (TCB).

Second, unlike desktops, mobile devices are often re-
source constrained. Any system for running trusted appli-
cations on a smartphone must be lightweight. While previ-
ous hypervisor-based solutions offer isolation from malicious
code [10, 12], such solutions may be too heavyweight for a
smartphone considering the impact on memory use, perfor-
mance, and energy consumption.

Finally, the popularity of smartphones and the emergence
of “app stores” has created a cottage industry where hun-
dreds of thousands of developers are writing a highly diverse
set of mobile applications. Any system that targets such a
large number of third-party developers with varying skills
and backgrounds must offer easy-to-use, rich programming
abstractions. In contrast, current lightweight approaches
(i.e., those not based on virtualization) typically offer run-
times that lack libraries and rich programming support [13].

This paper presents the Trusted Language Runtime
(TLR) architecture that facilitates the development of
trusted applications on a smartphone platform. TLR of-
fers two abstractions to mobile developers: a trustbox and a
trustlet. A trustbox is a runtime environment that protects
the integrity and confidentiality of code and data. Code and
data running inside trustbox cannot be read nor modified by
any code running outside the trustbox. A trustlet is the por-
tion of an application that runs inside trustbox. A trustlet
is a .NET-based class whose interface defines the data that
can flow in or out of the trustbox. With TLR, programmers
write trusted applications in .NET and specify which parts
of the application handle sensitive data and, thus, must run
inside the trustbox. The developer places these parts in a
trustlet class, and the TLR provides all the support needed

to run them in a trustbox. By splitting an application into a
small trusted component (a trustlet) and a large untrusted
one, the application’s attack surface is reduced. Any ex-
ploitable bug in the untrusted component does not affect
the trusted component’s integrity and confidentiality.

To offer its guarantees, the TLR leverages the ARM
TrustZone memory protection and interrupt delivery control
mechanisms, thus reducing the size of its TCB. In addition
to presenting the TLR design, we present an implementation
based on the ARM emulator [5]. While TrustZone technol-
ogy is available for many ARM chips, it is often left disabled
by the firmware. Finally, our paper discusses some of the
open issues with building trusted computing runtimes on a
smartphone that our experience with TLR has unraveled.

2. THE TLR ARCHITECTURE
TLR is motivated by three high-level design goals:

1. Security. The trusted computing base (TCB) of the
TLR should not include the operating system and most ap-
plication code running on the smartphone. None of this un-
trusted code should be able to interfere with or even inspect
trusted code running inside the TLR.
2. Ease of programmability. The effort to build trusted
applications with the TLR should be low. Programming in
TLR should be as simple as programming any of today’s
managed code environments such as Java or .NET.
3. Compatible with legacy software environments.
Running the TLR should not require a redesign of today’s
legacy operating systems or other legacy software running
on the smartphone.

2.1 High-Level Design
TLR provides two execution environments: an untrusted

one where the smartphone’s OS and most application soft-
ware runs, and a trusted one. The code running in the
trusted environment is isolated from any code running in
the untrusted “world”. Untrusted code cannot inspect or
modify the trusted code. To enable interaction, the TLR
provides a secure communication channel between the two
environments. The TLR ensures both integrity and confi-
dentiality for code and data inside the trusted environment.

The trusted world offers a language runtime with minimal
library support: in our implementation we offer the .NET
Micro Framework [1]. We find that a resource-constrained
runtime environment offers enough flexibility to accommo-
date the trusted computing needs of mobile applications
while keeping the TCB of the TLR small. With the TLR,
a developer needs to partition a mobile application in two
components: a small-sized trusted component that can run
on the resource-constrained runtime of the trusted world,
and a large-sized untrusted component that implements
most of the application’s functionality. This partitioning
process is similar in spirit to previous work on privilege sep-
aration [7] and partitioning of applications for improved se-
curity in distributed systems [8].

Figure 1 illustrates the TLR’s high-level design. To meet
our goals, we provide four primitives in designing the TLR:

1. Trustbox. A trustbox is an isolation environment that
protects the integrity and confidentiality of any code running
inside, as well as its state. The smartphone’s OS (or any
untrusted application code) cannot tamper with the code
running in a trustbox nor inspect its state.

!""#$%#

&'()&*+,#

$%#

-!'./!'0#

(12345267#/8397# &345267#/8397#

+"0'!&:;<#

)=)&0>#

&'()&?0&#

!"#$!%&'()*+#)+%'"#*!,-%'

&'()&*+,#

$@#

&'()&?0&#

.'

!""#$@# A#

Figure 1: High-level architecture of TLR.

2. Trustlet. A trustlet is a class within an application that
runs inside a trustbox. The trustlet specifies an interface
that defines what data can cross the boundary between the
trustbox and the untrusted world. The .NET runtime’s use
of strong types ensures that the data crossing this boundary
is clearly defined.
3. Platform identity. Each device that supports the
TLR must provide a unique cryptographic platform iden-
tity. This identity is used to authenticate the platform and
to protect (using encryption) any trusted application and
data deployed to the platform. Our implementation uses a
public/private key pair. Access to the private key is pro-
vided solely to the TLR which never reveals it to anyone.
4. Seal/Unseal data. These abstractions serve two roles:
(1) a trustlet can persist state across reboots, and (2) a re-
mote trusted party (i.e., a trusted server) can communicate
with a trustlet securely. Sealing data means that data is
encrypted and bound to a particular trustlet and platform
before it is released to the untrusted world. The TLR un-
seals data only to the same trustlet on the same platform
that originally sealed it. The trustlet’s identity is based on
a secure hash of its code.

2.2 Typical Development Scenario
To build a trusted mobile application with the TLR, a

developer typically performs the following three steps:

1. Determine which part of an application handles
sensitive data. To define a trustlet, the developer identifies
the application’s sensitive data, and separates the program
logic that needs to operate on this data into the trustlet. The
developer carefully defines the public interface to the trust-
let’s main class, as this interface controls what data crosses
the boundary between the trusted and untrusted worlds. A
trustlet may use many helper classes, and in fact may even
consist of multiple assemblies, yet there is only one class that
defines the trustlet’s boundary. Once all necessary classes
are compiled into assemblies, the developer runs a TLR post-
compilation tool for creating a package that contains the
closure of the assemblies, and a manifest.
2. Seal the sensitive data by binding it to the trust-
let. Although any application developer can encrypt data
without the help of the TLR, the TLR provides special en-
cryption primitives called seal and unseal [15]. These op-
erations allow a developer to encrypt (seal) an object such
that it can only be decrypted (unsealed) on a specific smart-
phone platform, by a specific trustlet. Both the platform and
trustlet identities are specified at seal time: a unique pub-
lic/private keypair for the platform, and a secure hash (e.g.,
SHA-1) of the trustlet assemblies. To recover sealed data,
the TLR decrypts the sealed data using the platform key,

!"#$!%&'(

)*+!(,-(./"()*+!(./"(

0",(!"#$!1&*+(+'!+*$2&*$(

,343567(

.876(

*39:6(

.876(

;3<7=3<6(

#4><?@>67(A8<B7(!<?@>67(A8<B7(

&C+"0!2*D(
E!+,(

!"#$!/+!(

!A(/2%(

#A(F"G(

/2%"0"2+$(#A(/2%(/2%"0"2+$(

!"#$!%&'()*+#)+%'"#*!,-%'

0CC/2.0!2&*(C"&'E(

!A(F"G(

E!+,((
$#CC&"!(

Figure 2: Component diagram of the entire system
with a TLR: the darkest shade shows the TLR com-
ponents, the light gray shows the smartphone’s stan-
dard system components, and the application com-
ponents are in white.

and checks that the hash of the trustlet requesting to unseal
matches the hash of the trustlet that originally sealed the
data. This mechanism allows the application to store trust-
let data across multiple sessions in persistent storage, and
it allows external parties (e.g. a trusted service) to ensure
that sealed data can only be accessed on platforms it trusts.
3. Deploy trustlet and sealed data to the smart-
phone and run them inside of a trustbox. To ensure
that the trustlet state is protected at runtime, the developer
instantiates a trustbox by providing the trustlet’s manifest.
At this point, the TLR loads the trustlet’s assemblies and
creates an instance of the trustlet main class. The resulting
object constitutes the runtime state of the trustlet until the
application destroys the trustbox. To allow the application
to interact with the trustlet, the application requests that
the TLR create a special entrypoint object, which is a trans-
parent proxy to the trustlet interface. Whenever the appli-
cation invokes methods on the entrypoint, the TLR trans-
parently forwards these calls to the trustlet main object.

2.3 The Lack of Remote Attestation
One common primitive used to build trusted applications

is “remote attestation” [10]: the ability of a computer to
attest its own software configuration to a remote party. Al-
though the TLR could provide a remote attestation mecha-
nism, we chose to omit this from our current design to re-
duce the overall system complexity. TLR is aimed at smart-
phones and we envision a usage model where smartphone
manufacturers initialize and ship their devices with a trusted
(uncompromised) TLR implementation. The manufacturer
signs this TLR configuration, and the boot process performs
signature verification. As long as the TLR implementation
is not compromised, it then protects the integrity and con-
fidentiality of data and code running in a trustbox. With
this model, we find the TLR offers adequate trust properties
even without remote attestation.

3. THE TLR IMPLEMENTATION
Figure 2 shows a detailed view of the TLR’s various com-

ponents. To meet our goals of an easy-to-use programming

environment along with a relatively small TCB, we use the
.NET MicroFramework (MF) [1] as the language runtime for
the trusted world. This allows applications to be built with
modern programming languages, such as C#, that improve
programmer productivity through features such as strong
type checking and garbage collection. The .NET MF is a
much smaller version of the standard .NET Framework, and
is specifically designed for resource constrained devices. The
.NET MF achieves its small size by eliminating: 1) the JIT
compiler, 2) some advanced language features such as gener-
ics and multidimensional arrays, and 3) some of the more
complex portions of the .NET class libraries. In addition to
its smaller codebase, the .NET MF implements the minimal
system support needed to run on “bare-metal” without the
need of an OS. The main drawback of using the .NET MF is
the performance hit due to interpreting the managed code
instructions rather than using a JIT compiler.

Beyond the .NET MF, we further reduce the TCB of the
trusted world by eliminating all support for I/O. This has
two effects. First, it greatly reduces the size of the .NET
class libraries. For example, the GUI libraries are no longer
needed, reducing the size of class libraries needed by ap-
plications. Second, it also eliminates the need for I/O de-
vice drivers, and these drivers typically constitute the largest
fraction of the TCB in modern operating systems.

To enable communication between the untrusted and
trusted worlds, we provide a secure procedure call (SPC)
mechanism. Four components in the above figure are needed
to implement this: the UWLib and TWLib libraries at the
language runtime level, and the UWDrv and TWDrv com-
munication drivers at the system support level. The drivers
are responsible for implementing the ARM TrustZone con-
text switch in/out of “secure” mode, and the library compo-
nents are responsible for handing off the appropriate input
and output data to the drivers.

To enable application partitioning, the TLR implements
the trustlet and trustbox classes. The trustlet defines the
self-contained application code which is to be run inside the
isolated trustbox.

We built our prototype implementation of the TLR us-
ing an ARM emulator [5]. We chose emulation because
the firmware for our development board disables the ARM
TrustZone features on the CPU. As a result, we can only
implement the SPC mechanism using the emulator with its
built-in support for TrustZone. To make the .NET MF v4.1
work inside the emulator, we used the .NET MF porting
kit [3] to customize the .NET MF to the ARM Cortex A8
instruction set.

3.1 Programming Model
To build an application that uses the TLR, at a minimum

the programmer must implement two components: 1) the
main trustlet class that defines the public interface between
the trusted and untrusted world, and 2) the code that man-
ages the lifetime of the trustbox. The third programming
feature provided by the TLR is optional: applications that
need to persist state across different runs of the application
can use the seal/unseal facility. We now present the details
of how a programmer uses each of these three features. Fig-
ures 3, 4, and 5 provide small code samples that demonstrate
the use of these APIs.

To implement the trustlet main class, the developer sim-
ply defines a new class that inherits from the Trustlet class,

public interface ITanWallet : IEntrypoint
{

public void Load(Envelope tanLst);
public Tan GetTan(long id);

}

public class TanWallet: ITanWallet, Trustlet
{

private TanList _tanLst = null;

public override void Init() {}

public void Load(Envelope tanLst) {
try {

_tanLst = (TanList) this.Unseal(tanLst);
} catch(Exception e) {

throw new Exception("Cannot recover TAN list.");
}

}

public Tan GetTan(long id) {
Tan tan = _tanLst.Search(id);
if (tan == null) {

throw new Exception("TAN id invalid.");
} else {

return tan;
}

}

public override void Finish() {}
}

Figure 3: Implementation of a trustlet.

and that implements the IEntrypoint interface. Any public
method defined in this class enables data to cross the bar-
rier between the trusted and untrusted worlds. All Trustlet
objects also provide two methods, Init and Finish, which
are called when the trustbox is created and destroyed. The
developer can override these methods to perform any appli-
cation specific operations during these events. The strongly-
typed nature of the .NET runtime makes it simple to reason
about what kinds of data is crossing this barrier. This is
important because the programmer must be careful not to
let any of the sensitive data protected by the trustbox leak
out into the untrusted world.

To manage the lifetime of a trustbox, the TLR provides
three methods implemented by the Trustbox class. To cre-
ate a trustbox, an application invokes the Create method,
which takes as input the trustlet manifest, and creates a new
trustbox dedicated to hosting the trustlet. The trustbox ref-
erence returned by Create can then be used by the applica-
tion to obtain a transparent proxy to the trustlet entrypoint,
by calling the Entrypoint method. The transparent proxy
is needed to ensure that all calls into the trustlet are routed
through the secure procedure call mechanism. Finally, when
the application wishes to terminate, it invokes the Destroy

method to clean up the runtime state of the trustlet.
Finally, the TLR provides the Seal and Unseal opera-

tions. Sealing is a form of encryption that binds the en-
crypted data to a specific trustlet running on a specific sys-
tem. To accomplish this, each unique smartphone has a
public/private keypair we call the platform id. This plat-
form id is used in combination with the secure hash of the
trustlet codebase to identify a particular instance of a trust-
let. Seal takes three inputs: 1) the object to be sealed,
2) the public key of the target platform id, and 3) a se-
cure hash of the target trustlet. Seal returns an envelope

// setup the TAN wallet trustlet in a trustbox
Trustbox tbox = Trustbox.Create("TanWallet.manifest");

// obtain a reference to the trustbox entrypoint
ITanWallet twallet = (ITanWallet) tbox.Entrypoint();

// load the TAN list issued and sealed by the bank
twallet.Load(myTanLst);

// run online transaction with the bank

// obtain a TAN with id requested by the bank
Tan tan = twallet.GetTan(id);

Figure 4: Calling services on a trustbox.

// the bank generates a TAN list for the customer
TanList newLst = customer.GenTanLst();

// seal the list
Envelope sealedLst = Trustlet.Seal(customer.PlatformID(),

Trustlet.Hash("TanWallet.manifest"), newLst);

// send the sealed list to the customer

Figure 5: Trusted service sending confidential data
to a trustlet.

which consists of the serialized object concatenated with the
trusted hash value, encrypted using the platform id public
key. Unseal decrypts the envelope (which can only be done
using with the platform id private key), and then returns
the original data only if the currently running trustlet hash
value matches the envelope hash value. As a result, unseal
ensures the trustlet identity and integrity.

The current status of our TLR implementation supports
all aspects of the programming model described above ex-
cept for the Seal and Unseal operations.

3.1.1 A Sample Application
To illustrate how these constructs work together, con-

sider our example shown in Figures 3, 4, and 5. To im-
prove security, banking services typically rely on multiple
mechanisms for authenticating their customers during on-
line transactions. In addition to the customer password,
banks normally issue a list of Transaction Authentication
Numbers (TANs) [2], each of which constitutes a one-time
password for authorizing a bank transfer. The bank sends a
list of TANs to each customer, and whenever the customer
performs an online transfer, the bank specifies an index into
the TAN list and asks for the TAN associated with that in-
dex. Today, banks usually write down the TAN list on a
plastic card, and send that card to the customer over an out
of band channel (e.g., physical mail).

Banks could take advantage of the TLR to build an appli-
cation that can protect the confidentiality of the TAN list
when stored on a customer’s smartphone. To accomplish
this, the bank would create a trustlet (whose code is trusted
by the bank), and seal the TAN list on a per-customer ba-
sis so that it can only be unsealed by the bank’s trustlet
running on that specific customer’s phone. The code run-
ning within the trustlet can access the TAN list, retrieve the
appropriate TAN number, and pass it to the untrusted envi-
ronment to be sent to the remote bank server. The trustlet
and the remote server communicate using SSL to protect
the confidentiality of the data while in flight.

3.2 Runtime Operation
In this section, we describe: 1) the boot process, 2) how

secure procedure calls are implemented, and 3) trustbox cre-
ation and termination.

3.2.1 System Boot
When an ARM CPU supports the TrustZone feature, the

processor boots in secure mode and runs the secure boot-
loader. Our bootloader is responsible for loading the TLR
image into memory and checking its integrity. Because
TrustZones provide hardware support for memory isolation,
the TLR runtime lives in the address space of the trusted
world and cannot be accessed from the untrusted world.
Next, the secure bootloader hands off to the initialization
code within the TLR runtime. After the TLR initialization
code finishes, it uses a mode switch instruction to exit secure
mode, at which point the untrusted world bootloader is in-
voked and the standard OS boot sequence is then executed.

3.2.2 Secure Procedure Call
To enforce the separation of an application between the

trusted and untrusted worlds, the TLR needs a mechanism
to communicate across that boundary. The TLR provides a
secure procedure call (SPC) which enables a secure commu-
nication channel between the two worlds.

To implement SPC, the TLR uses two kernel-mode
drivers: the untrusted world driver (UWDrv) and the
trusted world driver (TWDrv) shown in Figure 2. These
drivers use the ARM TrustZone instructions to enable
switching in and out of secure mode. When the UWDrv
receives a SPC request, the driver executes the smc special
instruction which raises a processor exception. This causes
the processor to enter a special privileged mode called mon-
itor mode, and then it jumps to the appropriate exception
handler which is implemented by the TWDrv driver. This
handler implements the context switch by saving the pro-
cessor state from the untrusted world, and restoring the
trusted world processor state. Next, the processor leaves
monitor mode, and the TWDrv forwards the request up to
the trusted world library (TWLib), which calls a managed
code handler to service the SPC request. When this handler
finishes, the system returns to the untrusted world using
the same mechanism. The drivers are also responsible for
marshaling the arguments and return values.

Our current implementation of SPC only runs on the
ARM emulator target, and we have not yet optimized
our implementation. In particular, we currently only sup-
port passing data (the SPC arguments and return val-
ues) between worlds through processor registers rather than
through shared memory.

3.2.3 Trustbox Creation and Termination
When the application requests the creation of a trustbox,

the TLR performs the following steps: 1) it computes the
hash of the trustlet assemblies specified by the manifest, 2)
it creates a new sandboxed environment inside the trusted
world by using a .NET AppDomain container – this is how
multiple trustlets that live in the trusted world are isolated
from each other, 3) it loads the trustlet assemblies into the
AppDomain, and 4) it creates an instance of the trustlet’s
main class. After these operations succeed, the TLR returns
a reference to the trustbox, which can be used for future
interactions with the trustbox.

When the application calls the Entrypoint method on
the trustbox reference, the untrusted world library (UWLib)
creates a transparent proxy and returns it to the untrusted
part of the application. After this step, whenever the un-
trusted application invokes a method on the proxy, the
UWLib forwards this invocation to the appropriate trust-
let inside the trustbox, using the SPC mechanism described
above. This invocation is fully transparently to the applica-
tion, and the object state is preserved across these calls.

To destroy a trustbox, the TLR runtime simply deletes the
AppDomain container of the trustbox thereby freeing all its
resources, and discarding its internal state. If the developer
wants to save any state persistently across instances, she can
implement a trustlet method for sealing the relevant state,
and having the application store it persistently.

4. OPEN ISSUES
In this section, we summarize some of the design and im-

plementation challenges we have not yet addressed.

4.1 Memory Management
The TLR is responsible for managing its internal state as

well as the memory state of the trustboxes. In our current
design, we statically allocate a fixed set of memory pages to
the trusted world when the platform boots. However, the
memory needs of applications running inside trustboxes may
vary over time, and possibly even exceed the capacity that
was allocated at boot. To support this, in the future we
may need a small OS kernel running in the trusted world to
enable demand paging to the flash memory typically found
in smartphones. Encryption must be used to ensure that
paging does not compromise the integrity and confidentiality
benefits that the TLR currently provides.

4.2 I/O for the Trusted World
Our current design of the TLR does not support I/O

directly from the trusted world. Removing this limita-
tion would offer two significant benefits. First, misbehav-
ior by the operating system running in the untrusted world
can cause denial of service for I/O operations requested by
a trustlet, and incorporating support for basic I/O (such
as use of the file system or the network) into the trusted
world would eliminate this problem. Second, a good source
of entropy is fundamental for generating random numbers
which are required by cryptographic operations within the
trustlets. A common way to collect entropy is to use hard-
ware I/O sources, and therefore offering I/O inside the
trusted world would enable this.

Even in the absence of I/O support, TLR enables secure
storage and networking. When data is to be stored or sent
remotely, trustlets encrypt the data before relaying it to
the untrusted world, where the encrypted data can then be
passed to the disk or the network. Although the untrusted
world could misbehave, such attacks cannot compromise the
data confidentiality.

4.3 Performance Overhead
Our use of the .NET MicroFramework offers significant

benefits in terms of a reduced TCB, but it comes at a notice-
able cost to performance. The primary performance over-
head arises from the code being interpreted rather than com-
piled to native instructions using a JIT compiler. One area
for future research is to understand if limited JIT function-

ality can provide a significant boost to performance without
bloating the TCB. Another possible avenue for the future is
to offload the responsibility for code generation to a trusted
JIT service in the cloud, to keep the TLR code base small.

4.4 Trustlet Debugging
To keep the TCB small, our current design offers no de-

bugging support for trustlets. During development, trustlets
can be initially debugged and tested within an ARM sim-
ulator. However, once isolated in a trustbox, trustlets can
only communicate through their interfaces with the outside,
making debugging very difficult. While debugging support
for trustlets could be added to TLR, adding such support
is in conflict with the security and isolation goals that TLR
trustboxes have. Finding the correct balance between secu-
rity and ease of debugging is a challenging open issue that
TLR shares with many trusted computing systems previ-
ously proposed [10, 13, 12].

5. RELATED WORK
Previous work focused on using trusted computing hard-

ware for building systems that provide code and data pro-
tection from the underlying OS [10, 13, 12]. Such systems
face a tension between security and usability. While some
systems depend on a large trusted computing base (TCB)
to offer high-level functionality [10], others have stronger se-
curity properties by building systems with small TCBs but
offer programming abstractions that are low-level [13, 12].
The TLR bridges these extremes by offering a high level
programming abstraction while keeping the TCB small.

Another area of research uses privilege separation for par-
titioning an application into security-sensitive and security-
insensitive components. Typically, these systems expose a
partitioning interface at the level of the programming lan-
guage, and enforce this separation by using a runtime [14],
or the OS itself [7]. In general, however, they still depend
on a large TCB, which includes the OS and the runtime.
Our work offers a coarser-grained privilege separation at the
language level by compartmentalizing an application while
significantly reducing the TCB size.

Finally, there is little published work on building sys-
tems that use the ARM TrustZone technology for their
trustworthy computing needs. One relevant piece of re-
lated work proposes to merge the TPM-based primitives
found on x86 machines with those found on ARM in order
to build a Linux-based embedded trusted computing plat-
form [16]. That paper uses a VM-based design and offers
a special “TrustZone VM” to run trusted code. In contrast,
the TLR avoids the energy and performance overheads that
come with hypervisor-based virtualization systems.

6. CONCLUSIONS
This paper presents the Trusted Language Runtime

(TLR), an environment for running trusted applications on
the smartphone. TLR offers a trustbox primitive, which is
a runtime environment that offers code and data integrity
and confidentiality. With TLR, programmers can write ap-
plications in .NET and specify which parts of the application
should run inside a trustbox. These parts, called trustlets,
are protected from the remaining code running on the smart-
phone, including its OS and other applications.

TLR uses the ARM TrustZone, which is a hardware tech-

nology for trustworthy computing found in ARM chips. The
rich hardware support offered by ARM TrustZone combined
with the flexibility of the .NET programming environments
allows TLR to offer a secure, yet rich programming envi-
ronment for developing trusted mobile applications. In ad-
dition to presenting the design and ARM emulator-based
implementation of TLR, this paper discusses some of the
open issues that such a platform raises. Our overarching
goal is to ignite the discussion of what trusted computing
abstractions we need to provide to mobile developers.

Acknowledgements: We would like to thank the
anonymous reviewers and Jaeyeon Jung, our shepherd, for
their feedback.

7. REFERENCES
[1] .NET Micro Framework.

http://www.microsoft.com/netmf/default.mspx.
[2] Transaction authentication number.

http://www.wikipedia.org/wiki/Transaction_
authentication_number.

[3] Porting the .NET Micro Framework. Microsoft
Technical White Paper, 2007. http://msdn.
microsoft.com/en-us/netframework/bb267253.aspx.

[4] ARM Security Technology – Building a Secure System
using TrustZone Technology. ARM Technical White
Paper, 2009.
http://infocenter.arm.com/help/topic/com.arm.
doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf.

[5] ARM. ARM RealView Development Suite.
http://www.arm.com/products/tools/
software-tools/index.php, last accessed Oct 21,
2010.

[6] J. Bickford, R. O’Hare, A. Baliga, V. Ganapathy, and
L. Iftode. Rootkits on Smart Phones: Attacks,
Implications and Opportunities. In Proc. of HotMobile
’10, 2010.

[7] D. Brumley and D. Song. Privtrans: automatically
partitioning programs for privilege separation. In
Proc. of USENIX Security ’04, 2004.

[8] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. In Proc. of SOSP ’07, 2007.

[9] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In Proc. of OSDI
’10, 2010.

[10] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A Virtual Machine-Based Platform
for Trusted Computing. In Proc. of SOSP ’03, 2003.

[11] M. Hypponen. Malware goes Mobile. Scientific
American, November 2006.

[12] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In Proc. of the IEEE
Symposium on Security and Privacy, May 2010.

[13] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An Execution Infrastructure for
TCB Minimization. In Proc. of EuroSys ’08, 2008.

[14] A. C. Myers. JFlow: Practical Mostly-Static
Information Flow Control. In Proc. of POPL ’99,
1999.

[15] Trusted Computing Group. Trusted platform module
specification, parts 1–3, 2007. version 1.2 revision 103,
Available from www.trustedcomputing.org.

[16] J. Winter. Trusted Computing Building Blocks for
Embedded Linux-based ARM TrustZone Platforms. In
Proc. of STC ’08, 2008.

